A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level pr...
- Autores:
-
Montes Ortiz, Zaide Katherine
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/48495
- Acceso en línea:
- http://hdl.handle.net/1992/48495
- Palabra clave:
- Quimiosensores
Ecología química animal
Proteínas de insectos
Biología
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_5904c67658786fd2fe400abc2fc10427 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/48495 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
title |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
spellingShingle |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa Quimiosensores Ecología química animal Proteínas de insectos Biología |
title_short |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
title_full |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
title_fullStr |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
title_full_unstemmed |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
title_sort |
A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa |
dc.creator.fl_str_mv |
Montes Ortiz, Zaide Katherine |
dc.contributor.advisor.none.fl_str_mv |
Molina Escobar, Jorge Alberto Reyes Muñoz, Alejandro |
dc.contributor.author.none.fl_str_mv |
Montes Ortiz, Zaide Katherine |
dc.contributor.jury.none.fl_str_mv |
Jiménez Avella, Diego Javier Latorre Stivalis, José Manuel |
dc.subject.armarc.es_CO.fl_str_mv |
Quimiosensores Ecología química animal Proteínas de insectos |
topic |
Quimiosensores Ecología química animal Proteínas de insectos Biología |
dc.subject.themes.none.fl_str_mv |
Biología |
description |
Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level provides a broader overview to compare different species, use of available databases, and increasing the number of candidate proteins in non-model insects. Here, we propose an in-silico approach using a combination of the genomic and functionally characterized dataset available in public databases to predict chemosensory receptors relevant for insect ecology. Using Hidden Markov Models, we generated 103 potential models capable of detecting chemosensory receptors, including olfactory receptors, odorantbinding proteins, and gustatory receptors involved in the detection of volatile organic compounds with high accuracy and covering a broader range of insect taxa. Our database set of predicted chemosensory includes a total of 3,708 ORs, 2,014 OBPs, 781 GRs, and 3,193 IRs proteins that should be useful for future experiments |
publishDate |
2020 |
dc.date.issued.es_CO.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-18T12:22:57Z |
dc.date.available.none.fl_str_mv |
2021-02-18T12:22:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/48495 |
dc.identifier.pdf.none.fl_str_mv |
u833751.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/48495 |
identifier_str_mv |
u833751.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
39 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Ciencias Biológicas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ciencias Biológicas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/e435172c-59c5-4032-980c-70c1759ee2b3/download https://repositorio.uniandes.edu.co/bitstreams/81cd028d-907d-4646-a733-e6e53755c5b8/download https://repositorio.uniandes.edu.co/bitstreams/e9cb41ae-4470-4622-883c-2ca2848f1671/download |
bitstream.checksum.fl_str_mv |
83cf61f47ae2ecb5b27e7e429823512e 25835972ba881dba5341a8861eded229 4832bf3ffe5164061d8832657173f7aa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927827971178496 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Escobar, Jorge Albertovirtual::16487-1Reyes Muñoz, Alejandrovirtual::16488-1Montes Ortiz, Zaide Katherined03aca4c-2570-4ab6-b112-064789f4b348500Jiménez Avella, Diego JavierLatorre Stivalis, José Manuel2021-02-18T12:22:57Z2021-02-18T12:22:57Z2020http://hdl.handle.net/1992/48495u833751.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level provides a broader overview to compare different species, use of available databases, and increasing the number of candidate proteins in non-model insects. Here, we propose an in-silico approach using a combination of the genomic and functionally characterized dataset available in public databases to predict chemosensory receptors relevant for insect ecology. Using Hidden Markov Models, we generated 103 potential models capable of detecting chemosensory receptors, including olfactory receptors, odorantbinding proteins, and gustatory receptors involved in the detection of volatile organic compounds with high accuracy and covering a broader range of insect taxa. Our database set of predicted chemosensory includes a total of 3,708 ORs, 2,014 OBPs, 781 GRs, and 3,193 IRs proteins that should be useful for future experiments"Los receptores olfativos de los insectos se están empleando como objetivos novedosos para desarrollar estrategias de control en insectos plagas de los cultivos y los vectores de enfermedades. Las metodologías tradicionales para su identificación son laboriosas y requieren mucho tiempo. Así, identificando estos receptores a nivel genómico proporciona una visión general más amplia para comparar diferentes especies, utilizar las bases de datos disponibles y aumentar el número de proteínas candidatas en insectos no modelos. Aquí proponemos un enfoque in-silico, utilizando una combinación del conjunto de datos genómicos y funcionales disponibles en las bases de datos públicas para predecir proteínas quimiosensoriales relevantes para la ecología de los insectos. Utilizando los modelos de Markov ocultos, generamos 103 modelos potenciales capaces de detectar receptores quimiosensoriales, incluyendo receptores olfativos, proteínas de unión a olores y receptores gustativos implicados en la detección de compuestos orgánicos volátiles con gran precisión y cubriendo un rango más amplio de taxones de insectos. Nuestro conjunto de bases de datos de quimiosensoriales predichos incluye un total de 3.708 OR, 2.014 OBP, 781 GR y 3.193 proteínas IR que deberían ser útiles para futuras validaciones experimentales."--Tomado del Formato de Documento de GradoMagíster en Ciencias BiológicasMaestría39 hojasapplication/pdfengUniversidad de los AndesMaestría en Ciencias BiológicasFacultad de CienciasDepartamento de Ciencias Biológicasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaA computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMQuimiosensoresEcología química animalProteínas de insectosBiologíaPublicationhttps://scholar.google.es/citations?user=nCoNP_MAAAAJvirtual::16487-1https://scholar.google.es/citations?user=hbXF8UEAAAAJvirtual::16488-10000-0003-3018-6726virtual::16487-10000-0003-2907-3265virtual::16488-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001012053virtual::16487-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395927virtual::16488-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::16487-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::16488-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::16487-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::16488-1THUMBNAILu833751.pdf.jpgu833751.pdf.jpgIM Thumbnailimage/jpeg14028https://repositorio.uniandes.edu.co/bitstreams/e435172c-59c5-4032-980c-70c1759ee2b3/download83cf61f47ae2ecb5b27e7e429823512eMD55TEXTu833751.pdf.txtu833751.pdf.txtExtracted texttext/plain59974https://repositorio.uniandes.edu.co/bitstreams/81cd028d-907d-4646-a733-e6e53755c5b8/download25835972ba881dba5341a8861eded229MD54ORIGINALu833751.pdfapplication/pdf33459608https://repositorio.uniandes.edu.co/bitstreams/e9cb41ae-4470-4622-883c-2ca2848f1671/download4832bf3ffe5164061d8832657173f7aaMD511992/48495oai:repositorio.uniandes.edu.co:1992/484952024-11-14 14:27:57.812http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |