A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa

Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level pr...

Full description

Autores:
Montes Ortiz, Zaide Katherine
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/48495
Acceso en línea:
http://hdl.handle.net/1992/48495
Palabra clave:
Quimiosensores
Ecología química animal
Proteínas de insectos
Biología
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_5904c67658786fd2fe400abc2fc10427
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/48495
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
title A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
spellingShingle A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
Quimiosensores
Ecología química animal
Proteínas de insectos
Biología
title_short A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
title_full A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
title_fullStr A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
title_full_unstemmed A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
title_sort A computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxa
dc.creator.fl_str_mv Montes Ortiz, Zaide Katherine
dc.contributor.advisor.none.fl_str_mv Molina Escobar, Jorge Alberto
Reyes Muñoz, Alejandro
dc.contributor.author.none.fl_str_mv Montes Ortiz, Zaide Katherine
dc.contributor.jury.none.fl_str_mv Jiménez Avella, Diego Javier
Latorre Stivalis, José Manuel
dc.subject.armarc.es_CO.fl_str_mv Quimiosensores
Ecología química animal
Proteínas de insectos
topic Quimiosensores
Ecología química animal
Proteínas de insectos
Biología
dc.subject.themes.none.fl_str_mv Biología
description Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level provides a broader overview to compare different species, use of available databases, and increasing the number of candidate proteins in non-model insects. Here, we propose an in-silico approach using a combination of the genomic and functionally characterized dataset available in public databases to predict chemosensory receptors relevant for insect ecology. Using Hidden Markov Models, we generated 103 potential models capable of detecting chemosensory receptors, including olfactory receptors, odorantbinding proteins, and gustatory receptors involved in the detection of volatile organic compounds with high accuracy and covering a broader range of insect taxa. Our database set of predicted chemosensory includes a total of 3,708 ORs, 2,014 OBPs, 781 GRs, and 3,193 IRs proteins that should be useful for future experiments
publishDate 2020
dc.date.issued.es_CO.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-18T12:22:57Z
dc.date.available.none.fl_str_mv 2021-02-18T12:22:57Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/48495
dc.identifier.pdf.none.fl_str_mv u833751.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/48495
identifier_str_mv u833751.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 39 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Maestría en Ciencias Biológicas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Biológicas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e435172c-59c5-4032-980c-70c1759ee2b3/download
https://repositorio.uniandes.edu.co/bitstreams/81cd028d-907d-4646-a733-e6e53755c5b8/download
https://repositorio.uniandes.edu.co/bitstreams/e9cb41ae-4470-4622-883c-2ca2848f1671/download
bitstream.checksum.fl_str_mv 83cf61f47ae2ecb5b27e7e429823512e
25835972ba881dba5341a8861eded229
4832bf3ffe5164061d8832657173f7aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927827971178496
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Escobar, Jorge Albertovirtual::16487-1Reyes Muñoz, Alejandrovirtual::16488-1Montes Ortiz, Zaide Katherined03aca4c-2570-4ab6-b112-064789f4b348500Jiménez Avella, Diego JavierLatorre Stivalis, José Manuel2021-02-18T12:22:57Z2021-02-18T12:22:57Z2020http://hdl.handle.net/1992/48495u833751.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Olfactory receptors in insects are being employed as novel targets to develop strategies to control the damaging behaviors of crop pests and disease vectors. Traditional methodologies for their identification are laborious and time-consuming. Thus, identifying these receptors at the genomic level provides a broader overview to compare different species, use of available databases, and increasing the number of candidate proteins in non-model insects. Here, we propose an in-silico approach using a combination of the genomic and functionally characterized dataset available in public databases to predict chemosensory receptors relevant for insect ecology. Using Hidden Markov Models, we generated 103 potential models capable of detecting chemosensory receptors, including olfactory receptors, odorantbinding proteins, and gustatory receptors involved in the detection of volatile organic compounds with high accuracy and covering a broader range of insect taxa. Our database set of predicted chemosensory includes a total of 3,708 ORs, 2,014 OBPs, 781 GRs, and 3,193 IRs proteins that should be useful for future experiments"Los receptores olfativos de los insectos se están empleando como objetivos novedosos para desarrollar estrategias de control en insectos plagas de los cultivos y los vectores de enfermedades. Las metodologías tradicionales para su identificación son laboriosas y requieren mucho tiempo. Así, identificando estos receptores a nivel genómico proporciona una visión general más amplia para comparar diferentes especies, utilizar las bases de datos disponibles y aumentar el número de proteínas candidatas en insectos no modelos. Aquí proponemos un enfoque in-silico, utilizando una combinación del conjunto de datos genómicos y funcionales disponibles en las bases de datos públicas para predecir proteínas quimiosensoriales relevantes para la ecología de los insectos. Utilizando los modelos de Markov ocultos, generamos 103 modelos potenciales capaces de detectar receptores quimiosensoriales, incluyendo receptores olfativos, proteínas de unión a olores y receptores gustativos implicados en la detección de compuestos orgánicos volátiles con gran precisión y cubriendo un rango más amplio de taxones de insectos. Nuestro conjunto de bases de datos de quimiosensoriales predichos incluye un total de 3.708 OR, 2.014 OBP, 781 GR y 3.193 proteínas IR que deberían ser útiles para futuras validaciones experimentales."--Tomado del Formato de Documento de GradoMagíster en Ciencias BiológicasMaestría39 hojasapplication/pdfengUniversidad de los AndesMaestría en Ciencias BiológicasFacultad de CienciasDepartamento de Ciencias Biológicasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaA computational approach for the prediction of relevant chemosensory proteins in a broad range of insect taxaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMQuimiosensoresEcología química animalProteínas de insectosBiologíaPublicationhttps://scholar.google.es/citations?user=nCoNP_MAAAAJvirtual::16487-1https://scholar.google.es/citations?user=hbXF8UEAAAAJvirtual::16488-10000-0003-3018-6726virtual::16487-10000-0003-2907-3265virtual::16488-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001012053virtual::16487-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395927virtual::16488-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::16487-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::16488-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::16487-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::16488-1THUMBNAILu833751.pdf.jpgu833751.pdf.jpgIM Thumbnailimage/jpeg14028https://repositorio.uniandes.edu.co/bitstreams/e435172c-59c5-4032-980c-70c1759ee2b3/download83cf61f47ae2ecb5b27e7e429823512eMD55TEXTu833751.pdf.txtu833751.pdf.txtExtracted texttext/plain59974https://repositorio.uniandes.edu.co/bitstreams/81cd028d-907d-4646-a733-e6e53755c5b8/download25835972ba881dba5341a8861eded229MD54ORIGINALu833751.pdfapplication/pdf33459608https://repositorio.uniandes.edu.co/bitstreams/e9cb41ae-4470-4622-883c-2ca2848f1671/download4832bf3ffe5164061d8832657173f7aaMD511992/48495oai:repositorio.uniandes.edu.co:1992/484952024-11-14 14:27:57.812http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co