Arithmetic equivalence through Galois representations
"An important objective in Algebraic number theory is the study of number fields and their ring Of algebraic integers. One of the crucial arithmetic invariants associated with a number field K is its Dedekind zeta function? This function is the natural generalization of the Riemann zeta functio...
- Autores:
-
Caro Reyes, Jerson Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/13907
- Acceso en línea:
- http://hdl.handle.net/1992/13907
- Palabra clave:
- Campos algebraicos - Investigaciones
Teoría de Galois - Investigaciones
Teoría algebraica de los números - Investigaciones
Anillos (Algebra) - Investigaciones
Funciones Zeta - Investigaciones
Hipótesis de Riemann - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_58cbfbbe44e34355d38343856167e216 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/13907 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mantilla Soler, Guillermo Arturob0036201-de2b-422d-b5b7-ac9ae3dd1be3500Caro Reyes, Jerson Leonardo9428b934-14dc-42b6-bce6-81780fb509ac500Caicedo Ferrer, XavierPlazas Vargas, Jorge AndrésBogotá2018-09-28T11:01:22Z2018-09-28T11:01:22Z2016http://hdl.handle.net/1992/13907u753875.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"An important objective in Algebraic number theory is the study of number fields and their ring Of algebraic integers. One of the crucial arithmetic invariants associated with a number field K is its Dedekind zeta function? This function is the natural generalization of the Riemann zeta function and gives us arithmetic information about the number field. For example, if we compute its residue at the isolated singularity l, we get a formula for the order of the class group, in the case of non real quadratic fields". -- Tomado del abstractMagíster en MatemáticasMaestría55 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaArithmetic equivalence through Galois representationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMCampos algebraicos - InvestigacionesTeoría de Galois - InvestigacionesTeoría algebraica de los números - InvestigacionesAnillos (Algebra) - InvestigacionesFunciones Zeta - InvestigacionesHipótesis de Riemann - InvestigacionesMatemáticasPublicationTHUMBNAILu753875.pdf.jpgu753875.pdf.jpgIM Thumbnailimage/jpeg4133https://repositorio.uniandes.edu.co/bitstreams/37aa25d5-5629-4c1b-995d-f3567b876889/downloadc143c9e68fabe9eb4d96e3e1364d1afaMD55TEXTu753875.pdf.txtu753875.pdf.txtExtracted texttext/plain100129https://repositorio.uniandes.edu.co/bitstreams/8f20c9c3-8ae3-4833-be83-d1519a8da16a/download3d13ee1a09d757631c50e58bf7f11942MD54ORIGINALu753875.pdfapplication/pdf473994https://repositorio.uniandes.edu.co/bitstreams/5412115c-280a-474d-8424-15c85b20a7a2/download83d9f1bf8bebc48cad69b4688e1954b8MD511992/13907oai:repositorio.uniandes.edu.co:1992/139072023-10-10 18:13:20.043http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Arithmetic equivalence through Galois representations |
title |
Arithmetic equivalence through Galois representations |
spellingShingle |
Arithmetic equivalence through Galois representations Campos algebraicos - Investigaciones Teoría de Galois - Investigaciones Teoría algebraica de los números - Investigaciones Anillos (Algebra) - Investigaciones Funciones Zeta - Investigaciones Hipótesis de Riemann - Investigaciones Matemáticas |
title_short |
Arithmetic equivalence through Galois representations |
title_full |
Arithmetic equivalence through Galois representations |
title_fullStr |
Arithmetic equivalence through Galois representations |
title_full_unstemmed |
Arithmetic equivalence through Galois representations |
title_sort |
Arithmetic equivalence through Galois representations |
dc.creator.fl_str_mv |
Caro Reyes, Jerson Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Mantilla Soler, Guillermo Arturo |
dc.contributor.author.none.fl_str_mv |
Caro Reyes, Jerson Leonardo |
dc.contributor.jury.none.fl_str_mv |
Caicedo Ferrer, Xavier Plazas Vargas, Jorge Andrés |
dc.subject.keyword.es_CO.fl_str_mv |
Campos algebraicos - Investigaciones Teoría de Galois - Investigaciones Teoría algebraica de los números - Investigaciones Anillos (Algebra) - Investigaciones Funciones Zeta - Investigaciones Hipótesis de Riemann - Investigaciones |
topic |
Campos algebraicos - Investigaciones Teoría de Galois - Investigaciones Teoría algebraica de los números - Investigaciones Anillos (Algebra) - Investigaciones Funciones Zeta - Investigaciones Hipótesis de Riemann - Investigaciones Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
"An important objective in Algebraic number theory is the study of number fields and their ring Of algebraic integers. One of the crucial arithmetic invariants associated with a number field K is its Dedekind zeta function? This function is the natural generalization of the Riemann zeta function and gives us arithmetic information about the number field. For example, if we compute its residue at the isolated singularity l, we get a formula for the order of the class group, in the case of non real quadratic fields". -- Tomado del abstract |
publishDate |
2016 |
dc.date.issued.es_CO.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-09-28T11:01:22Z |
dc.date.available.none.fl_str_mv |
2018-09-28T11:01:22Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/13907 |
dc.identifier.pdf.none.fl_str_mv |
u753875.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/13907 |
identifier_str_mv |
u753875.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
55 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.coverage.spatial.es_CO.fl_str_mv |
Bogotá |
dc.publisher.none.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Uniandes |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/37aa25d5-5629-4c1b-995d-f3567b876889/download https://repositorio.uniandes.edu.co/bitstreams/8f20c9c3-8ae3-4833-be83-d1519a8da16a/download https://repositorio.uniandes.edu.co/bitstreams/5412115c-280a-474d-8424-15c85b20a7a2/download |
bitstream.checksum.fl_str_mv |
c143c9e68fabe9eb4d96e3e1364d1afa 3d13ee1a09d757631c50e58bf7f11942 83d9f1bf8bebc48cad69b4688e1954b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133981975478272 |