Arithmetic equivalence through Galois representations
"An important objective in Algebraic number theory is the study of number fields and their ring Of algebraic integers. One of the crucial arithmetic invariants associated with a number field K is its Dedekind zeta function? This function is the natural generalization of the Riemann zeta functio...
- Autores:
-
Caro Reyes, Jerson Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/13907
- Acceso en línea:
- http://hdl.handle.net/1992/13907
- Palabra clave:
- Campos algebraicos - Investigaciones
Teoría de Galois - Investigaciones
Teoría algebraica de los números - Investigaciones
Anillos (Algebra) - Investigaciones
Funciones Zeta - Investigaciones
Hipótesis de Riemann - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Summary: | "An important objective in Algebraic number theory is the study of number fields and their ring Of algebraic integers. One of the crucial arithmetic invariants associated with a number field K is its Dedekind zeta function? This function is the natural generalization of the Riemann zeta function and gives us arithmetic information about the number field. For example, if we compute its residue at the isolated singularity l, we get a formula for the order of the class group, in the case of non real quadratic fields". -- Tomado del abstract |
---|