Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil

The lineament analysis method consists in the mapping in the lineaments of a given area. This method can be a good alternative to the traditional exploration methods, because it is considerably cheaper than these ones, because most of the time the data sources are open to the public. The main purpos...

Full description

Autores:
Bolaño De la Hoz, Juan Pablo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/59346
Acceso en línea:
http://hdl.handle.net/1992/59346
Palabra clave:
Remote sensing
Lineament
Ore deposits
Density map
Magnetic data
Geociencias
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNIANDES2_5698c5772a8025368b2b6e18467a01f9
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/59346
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
title Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
spellingShingle Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
Remote sensing
Lineament
Ore deposits
Density map
Magnetic data
Geociencias
title_short Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
title_full Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
title_fullStr Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
title_full_unstemmed Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
title_sort Effectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil
dc.creator.fl_str_mv Bolaño De la Hoz, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Nitescu, Bogdan
Pearse, Jillian
dc.contributor.author.none.fl_str_mv Bolaño De la Hoz, Juan Pablo
dc.contributor.jury.none.fl_str_mv Tary, Jean Baptiste
dc.subject.keyword.none.fl_str_mv Remote sensing
Lineament
Ore deposits
Density map
Magnetic data
topic Remote sensing
Lineament
Ore deposits
Density map
Magnetic data
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description The lineament analysis method consists in the mapping in the lineaments of a given area. This method can be a good alternative to the traditional exploration methods, because it is considerably cheaper than these ones, because most of the time the data sources are open to the public. The main purpose of this method is to identify the zones with the highest density of lineaments, which can be the zones hosting ore deposits. This method can be performed using optical, radar remote sensing data, but also magnetic data, which makes this method more feasible, due to it is not limited to a certain type of data. Moreover, the results from the different data can change because each one of the type of data reflects different features of the zone. This study will analyze the relation between the density of lineament and the presence of ore deposits in the northwest of the city of Macapá in Brazil. In order to achieve this, magnetic and satellite data will be use to extract the lineaments of the area using the Arcgis pro software.The lineaments extracted from the sentinel 1 VV and VH polarization images resulted to be the ones that better located the known ore deposits of the study area. Also, the directional filtered image from the S1A VH polarization images made a good localization of the ore deposits of the study area and also enhance the lineaments.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-29T15:00:04Z
dc.date.available.none.fl_str_mv 2022-07-29T15:00:04Z
dc.date.issued.none.fl_str_mv 2022-07-06
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/59346
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/59346
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Alavi-Sereshki, M. M. (1972). Analytic signals and hilbert transforms (Doctoral dissertation, Texas Tech University).
Balasubramanian, A. (2017). Digital elevation model (DEM) in GIS. University of Mysore.
Canada Natural Resources. (2015). Passive vs. Active Sensing. Natural Resources Canada. Retrieved from https://www.nrcan.gc.ca/maps-tools-publications/satelliteimagery-air-photos/remote-sensing-tutorials/introduction/passive-vs-active-sensing/14639
Carr, J. R. (1996). Numerical analysis for the geological sciences. Estudios Geogr´aficos, 57, 166.
Dasgupta, S., & Mukherjee, S. (2019). Remote sensing in lineament identification: Examples from western India. In Developments in Structural geology and Tectonics (Vol. 5, pp. 205-221). Elsevier.
ESA. (n.d.). Snap. SNAP - Earth Online. Retrieved from:https://earth.esa.int/ eogateway/tools/snap
ESA. (n.d.). Sentinel-1. Sentinels. Retrieved March 17, 2022. Retrieved from: https: //sentinels.copernicus.eu/web/sentinel/missions/sentinel-1
Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. In Multidisciplinary digital publishing institute proceedings (Vol. 18, No. 1, p. 11).
Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J. P., Hawker, L., Florinsky, I. V., ... & Strobl, P. (2021). Digital elevation models: Terminology and definitions. Remote Sensing, 13(18), 3581.
Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62(9), 2480-2493
Javhar, A., Chen, X., Bao, A., Jamshed, A., Yunus, M., Jovid, A., & Latipa, T. (2019). Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sensing, 11(7), 778.
Jong, S. M. D., Meer, F. D., & Clevers, J. G. (2004). Basics of remote sensing. In Remote sensing image analysis: Including the spatial domain (pp. 1-15). Springer, Dordrecht.
Li, X. (2006). Understanding 3D analytic signal amplitude. Geophysics, 71(2), L13- L16.
Lowrie, W., & Fichtner, A. (2020). Fundamentals of geophysics. Cambridge university press.
Manuel, R., Brito, M. D. G., Chichorro, M., & Rosa, C. (2017). Remote sensing for mineral exploration in central Portugal. Minerals, 7(10), 184.
Marston, B. E., Jenny, B. (2015). Improving the representation of major landforms in analytical relief shading. International Journal of Geographical Information Science, 29(7), 1144-1165.
Mårtensson, U. (2011). Introduction to Remote Sensing and Geographical Information Systems.
Middleton, M., Schnur, T., Sorjonen-Ward, P., & Hyv¨onen, E. (2015). Geological lineament interpretation using the object-based image analysis approach: results of semi-automated analyses versus visual interpretation. Geological Survey of Finland, Special Paper, 57, 135-154.
Mostafa, M. E., Qari, M. Y. H. (1995). An exact technique of counting lineaments. Engineering Geology, 39(1-2), 5-15.
NASA. (2021). Landsat 8. NASA. Retrieved from https://landsat.gsfc.nasa.gov/satellites/landsat8/
Pour, A. B., Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, 64, 13-22.
Prost, G. L. (2013). Remote sensing for geoscientists (pp. 309-310). New York: CRC Press.
Barbosa, J. D. P. D. O., Chaves, C. L., Costa Neto, M. C. D., Anjos, G. C. D., & Costa, L. T. D. R. (2015). Geologia e recursos minerais da folha Macapá-NA. 22-YD, estado do Amapá.
GeoSGB (n.d.) Folha Macapá - NA.22-Y-D. Retrieved from: https://geosgb.cprm. gov.br/geosgb/downloads$_$en.html
Horikava, É. H. (2017) & Scarpelli, W., . Gold, iron and manganese in central Amapá, Brazil. Brazilian Journal of Geology, 47, 703-721.
Rajesh, H. M. (2004). Application of remote sensing and GIS in mineral resource mapping-An overview. Journal of mineralogical and Petrological Sciences, 99(3), 83- 103.
Roest, W. R., Verhoef, J., Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.
Rosa, J. W. C., Rosa, J. W. C., & Fuck, R. A. (2014). Geophysical structures and tectonic evolution of the southern Guyana shield, Brazil. Journal of South American Earth Sciences, 52, 57-71.
Salem, A., Williams, S., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The leading edge, 26(12), 1502-1505.
Sentinel-1 Toolbox, (n.d.). Available online: https://sentinels.copernicus.eu/ web/sentinel/toolboxes/sentinel-1
Vincent, R. K. (1997). Fundamentals of geological and environmental remote sensing. Prentice Hall.
Schobbenhaus, C., HE, A., GR, D. (1982). Mapa geológico do Brasil e da área oceánica adjacente incluindo depósitos minerais, escala 1: 2.500.000.
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 36 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/64ff492d-b707-409b-a51d-4ff27f471369/download
https://repositorio.uniandes.edu.co/bitstreams/a38e601b-e9d8-4b92-8c3a-5f86ce53a477/download
https://repositorio.uniandes.edu.co/bitstreams/952eab58-0229-46c6-af9d-95956c153b2c/download
https://repositorio.uniandes.edu.co/bitstreams/478c2500-6792-4b70-88ef-a6745f0f4835/download
https://repositorio.uniandes.edu.co/bitstreams/59b37b59-6070-4c17-9459-1f39219dc6bf/download
https://repositorio.uniandes.edu.co/bitstreams/9a1c831e-87d5-43ea-a48c-ccf55841a0dc/download
https://repositorio.uniandes.edu.co/bitstreams/db081d06-6377-4f9e-af43-6eb491c530a6/download
https://repositorio.uniandes.edu.co/bitstreams/4eba02ae-e217-45b4-95c7-3414e0410a45/download
bitstream.checksum.fl_str_mv 51f65f2e22cd6384c4d8cf91fb360a99
cd5d55d13e7bb27197e35a3bc7e362ef
84a900c9dd4b2a10095a94649e1ce116
6b0c63bf3d7466b774809e6758630866
4491fe1afb58beaaef41a73cf7ff2e27
351bd7fe282dc39d90aae9203231146b
ed59498a4e9f73d779466a36fb76979f
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134011960557568
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nitescu, Bogdan761f5432-6ebf-4cdb-9961-ee881e0521b8600Pearse, Jillianvirtual::13379-1Bolaño De la Hoz, Juan Pablo29233c3d-556a-4acf-87ce-773fb89efecb600Tary, Jean Baptiste2022-07-29T15:00:04Z2022-07-29T15:00:04Z2022-07-06http://hdl.handle.net/1992/59346instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The lineament analysis method consists in the mapping in the lineaments of a given area. This method can be a good alternative to the traditional exploration methods, because it is considerably cheaper than these ones, because most of the time the data sources are open to the public. The main purpose of this method is to identify the zones with the highest density of lineaments, which can be the zones hosting ore deposits. This method can be performed using optical, radar remote sensing data, but also magnetic data, which makes this method more feasible, due to it is not limited to a certain type of data. Moreover, the results from the different data can change because each one of the type of data reflects different features of the zone. This study will analyze the relation between the density of lineament and the presence of ore deposits in the northwest of the city of Macapá in Brazil. In order to achieve this, magnetic and satellite data will be use to extract the lineaments of the area using the Arcgis pro software.The lineaments extracted from the sentinel 1 VV and VH polarization images resulted to be the ones that better located the known ore deposits of the study area. Also, the directional filtered image from the S1A VH polarization images made a good localization of the ore deposits of the study area and also enhance the lineaments.GeocientíficoPregrado36 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, BrazilTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRemote sensingLineamentOre depositsDensity mapMagnetic dataGeocienciasAlavi-Sereshki, M. M. (1972). Analytic signals and hilbert transforms (Doctoral dissertation, Texas Tech University).Balasubramanian, A. (2017). Digital elevation model (DEM) in GIS. University of Mysore.Canada Natural Resources. (2015). Passive vs. Active Sensing. Natural Resources Canada. Retrieved from https://www.nrcan.gc.ca/maps-tools-publications/satelliteimagery-air-photos/remote-sensing-tutorials/introduction/passive-vs-active-sensing/14639Carr, J. R. (1996). Numerical analysis for the geological sciences. Estudios Geogr´aficos, 57, 166.Dasgupta, S., & Mukherjee, S. (2019). Remote sensing in lineament identification: Examples from western India. In Developments in Structural geology and Tectonics (Vol. 5, pp. 205-221). Elsevier.ESA. (n.d.). Snap. SNAP - Earth Online. Retrieved from:https://earth.esa.int/ eogateway/tools/snapESA. (n.d.). Sentinel-1. Sentinels. Retrieved March 17, 2022. Retrieved from: https: //sentinels.copernicus.eu/web/sentinel/missions/sentinel-1Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. In Multidisciplinary digital publishing institute proceedings (Vol. 18, No. 1, p. 11).Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J. P., Hawker, L., Florinsky, I. V., ... & Strobl, P. (2021). Digital elevation models: Terminology and definitions. Remote Sensing, 13(18), 3581.Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62(9), 2480-2493Javhar, A., Chen, X., Bao, A., Jamshed, A., Yunus, M., Jovid, A., & Latipa, T. (2019). Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sensing, 11(7), 778.Jong, S. M. D., Meer, F. D., & Clevers, J. G. (2004). Basics of remote sensing. In Remote sensing image analysis: Including the spatial domain (pp. 1-15). Springer, Dordrecht.Li, X. (2006). Understanding 3D analytic signal amplitude. Geophysics, 71(2), L13- L16.Lowrie, W., & Fichtner, A. (2020). Fundamentals of geophysics. Cambridge university press.Manuel, R., Brito, M. D. G., Chichorro, M., & Rosa, C. (2017). Remote sensing for mineral exploration in central Portugal. Minerals, 7(10), 184.Marston, B. E., Jenny, B. (2015). Improving the representation of major landforms in analytical relief shading. International Journal of Geographical Information Science, 29(7), 1144-1165.Mårtensson, U. (2011). Introduction to Remote Sensing and Geographical Information Systems.Middleton, M., Schnur, T., Sorjonen-Ward, P., & Hyv¨onen, E. (2015). Geological lineament interpretation using the object-based image analysis approach: results of semi-automated analyses versus visual interpretation. Geological Survey of Finland, Special Paper, 57, 135-154.Mostafa, M. E., Qari, M. Y. H. (1995). An exact technique of counting lineaments. Engineering Geology, 39(1-2), 5-15.NASA. (2021). Landsat 8. NASA. Retrieved from https://landsat.gsfc.nasa.gov/satellites/landsat8/Pour, A. B., Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, 64, 13-22.Prost, G. L. (2013). Remote sensing for geoscientists (pp. 309-310). New York: CRC Press.Barbosa, J. D. P. D. O., Chaves, C. L., Costa Neto, M. C. D., Anjos, G. C. D., & Costa, L. T. D. R. (2015). Geologia e recursos minerais da folha Macapá-NA. 22-YD, estado do Amapá.GeoSGB (n.d.) Folha Macapá - NA.22-Y-D. Retrieved from: https://geosgb.cprm. gov.br/geosgb/downloads$_$en.htmlHorikava, É. H. (2017) & Scarpelli, W., . Gold, iron and manganese in central Amapá, Brazil. Brazilian Journal of Geology, 47, 703-721.Rajesh, H. M. (2004). Application of remote sensing and GIS in mineral resource mapping-An overview. Journal of mineralogical and Petrological Sciences, 99(3), 83- 103.Roest, W. R., Verhoef, J., Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.Rosa, J. W. C., Rosa, J. W. C., & Fuck, R. A. (2014). Geophysical structures and tectonic evolution of the southern Guyana shield, Brazil. Journal of South American Earth Sciences, 52, 57-71.Salem, A., Williams, S., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The leading edge, 26(12), 1502-1505.Sentinel-1 Toolbox, (n.d.). Available online: https://sentinels.copernicus.eu/ web/sentinel/toolboxes/sentinel-1Vincent, R. K. (1997). Fundamentals of geological and environmental remote sensing. Prentice Hall.Schobbenhaus, C., HE, A., GR, D. (1982). Mapa geológico do Brasil e da área oceánica adjacente incluindo depósitos minerais, escala 1: 2.500.000.201812866Publicationhttps://scholar.google.es/citations?user=51m_M7sAAAAJvirtual::13379-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001556274virtual::13379-15a9bff40-dc9a-46f5-ac1b-acd72f765934virtual::13379-15a9bff40-dc9a-46f5-ac1b-acd72f765934virtual::13379-1THUMBNAILEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdf.jpgEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdf.jpgIM Thumbnailimage/jpeg14382https://repositorio.uniandes.edu.co/bitstreams/64ff492d-b707-409b-a51d-4ff27f471369/download51f65f2e22cd6384c4d8cf91fb360a99MD516Formato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdf.jpgFormato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdf.jpgIM Thumbnailimage/jpeg16148https://repositorio.uniandes.edu.co/bitstreams/a38e601b-e9d8-4b92-8c3a-5f86ce53a477/downloadcd5d55d13e7bb27197e35a3bc7e362efMD518CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/952eab58-0229-46c6-af9d-95956c153b2c/download84a900c9dd4b2a10095a94649e1ce116MD512TEXTEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdf.txtEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdf.txtExtracted texttext/plain45175https://repositorio.uniandes.edu.co/bitstreams/478c2500-6792-4b70-88ef-a6745f0f4835/download6b0c63bf3d7466b774809e6758630866MD515Formato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdf.txtFormato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/59b37b59-6070-4c17-9459-1f39219dc6bf/download4491fe1afb58beaaef41a73cf7ff2e27MD517ORIGINALEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdfEffectiveness of lineament analysis as a method for ore deposit exploration in the Greenstone belts of the southern Guiana Shield in the Amapá Region, Brazil..pdfapplication/pdf137307081https://repositorio.uniandes.edu.co/bitstreams/9a1c831e-87d5-43ea-a48c-ccf55841a0dc/download351bd7fe282dc39d90aae9203231146bMD57Formato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdfFormato_autorizacion_entrega_tesis_ Juan Pablo Bolaño.pdfHIDEapplication/pdf389890https://repositorio.uniandes.edu.co/bitstreams/db081d06-6377-4f9e-af43-6eb491c530a6/downloaded59498a4e9f73d779466a36fb76979fMD514LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/4eba02ae-e217-45b4-95c7-3414e0410a45/download5aa5c691a1ffe97abd12c2966efcb8d6MD5131992/59346oai:repositorio.uniandes.edu.co:1992/593462024-03-13 14:55:22.771http://creativecommons.org/licenses/by-sa/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==