Electromagnetic shielding with nanocomposites built with 3D-printing techniques
Measurements and tests taken for this project were made using Universidad de los Andes' clean room and anechoic chamber laboratories.
- Autores:
-
Buitrón Burbano, Isabela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/63955
- Acceso en línea:
- http://hdl.handle.net/1992/63955
- Palabra clave:
- 3D printing
Conductive filament
Electrifi
Electrical material characterization
Electromagnetic shielding
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_563ad936e9ddbca8a32e0b734a64bbaf |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/63955 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
title |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
spellingShingle |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques 3D printing Conductive filament Electrifi Electrical material characterization Electromagnetic shielding Ingeniería |
title_short |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
title_full |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
title_fullStr |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
title_full_unstemmed |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
title_sort |
Electromagnetic shielding with nanocomposites built with 3D-printing techniques |
dc.creator.fl_str_mv |
Buitrón Burbano, Isabela |
dc.contributor.advisor.none.fl_str_mv |
Avila Bernal, Alba Graciela Pérez López, Carlos Andres |
dc.contributor.author.none.fl_str_mv |
Buitrón Burbano, Isabela |
dc.contributor.jury.none.fl_str_mv |
Segura Quijano, Fredy Enrique |
dc.subject.keyword.none.fl_str_mv |
3D printing Conductive filament Electrifi Electrical material characterization Electromagnetic shielding |
topic |
3D printing Conductive filament Electrifi Electrical material characterization Electromagnetic shielding Ingeniería |
dc.subject.themes.es_CO.fl_str_mv |
Ingeniería |
description |
Measurements and tests taken for this project were made using Universidad de los Andes' clean room and anechoic chamber laboratories. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-07 |
dc.date.accessioned.none.fl_str_mv |
2023-01-18T16:55:33Z |
dc.date.available.none.fl_str_mv |
2023-01-18T16:55:33Z |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/63955 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/63955 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Abbasi, H; Antunes, M & Velasco, J (2019). Recent Advances in Carbon-based Polymer Nanocomposites for Electromagnetic Interference Shielding. p.36. Alsoufi, Mohammad & El-Sayed, Abdulrhman. (2017). Warping Deformation of Desktop 3D Printed Parts Manufactured by Open Source Fused Deposition Modeling (FDM) System. Inter national Journal of Mechanical Mechatronics Engineering. 17. 7-16. Ardavan, M (2020). Mitigating 5G Interference Signals In The C-Band. Retrieved from: http: //www.satmagazine.com/story.php?number=2132459167 Bjorklof, D (1999). Shielding for EMC. Compliance Engineering. Retrieved from: http://www. cemag.com/99APG/Bjork137.html Bodnar, D; Denny, H & Jenkins, B (1979). Shielding effectiveness measurements on conductive plastics. IEEE International Symposium on Electromagnetic Compatibility, 27-33. Castañeda-Uribe & Avila, A (2020). Enhancing Electromagnetic Interference Shielding Effective- ´ ness of Polymer Nanocomposites by Modifying Subsurface Carbon Nanotube Distribution. Doi: 10.1002/adem.202000707 Chomerics (2000). EMI shielding theory. Retrieved from: http://chomerics.com/product/ documents/emicat/pg192theoryofemi.pdf Christopoulos, C (1995). Principles and Techniques of Electromagnetic Compatibility. Boca Ra ton, FL: CRC Press. Clayton, P (2006). Introduction to Electromagnetic Compatibility. John Wiley & Sons Colin, X (2009). Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press Taylor & Francis Group. Ebrahimi, N.D. & Ju, Y.S (2018). Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments. Addit. Manuf. 24, 479-485. Emerson, W.H (1973). Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation 21(4): 484-490. F. Pizarro, R. Salazar, E. Rajo-Iglesias, M. Rodríguez, S. Fingerhuth & G. Hermosilla (2019). Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies. IEEE Access, vol. 7, pp. 106814-106823, 2019, doi: 10.1109/ACCESS.2019.2932912. Federal Communications Commission (2020). Auction 107: 3.7 GHz Service. Retrieved from: https://www.fcc.gov/auction/107/factsheet Flowers, P.F., et al (2018). 3D printing electronic components and circuits with conductive thermoplastic filament. Addit. Manuf. 18, 156-163 Ganguly, S; Bhawal, P; Ravindren, R & Chandra, N (2018). Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. American Scientific Publishers. DOI: 10.1166/jnn.2018.15828 Gaud, Brijesh. (2022). Re: How can I calculate EMI shielding using S Parameters. Re trieved from: https://www.researchgate.net/post/How_can_I_calculate_EMI_shielding_ using_S_Parameters/61ee75314acbf25e7859559a/citation/download. George, S (2017). Why Are Honeycomb Cells Hexagonal? [Science Fri day]. Retrieved from: https://www.sciencefriday.com/educational-resources/ why-do-bees-build-hexagonal-honeycomb-cells/ Grimes, C. A., Mungle, C & Kouzoudis, D (2000). The 500 MHz to 5.5 GHz complex permittiv ity spectra of single-wall carbon nanotube-loaded polymer composites. Chemical physics Letters 319(5-6): 460-464. Guojian, Z (2011). Eliminates the Electromagnetic Interference Based on the PLC Configuration Software. From International Conference on Computer Science, Environment, Ecoinformatics, and Education. Pp 386-391. Springer. Hashemi, R (n.d). FDM 3D Printing of Conductive Polymer Nanocomposites: A novel process for functional and Smart Textile. Huang, Y; Li, N; Ma, Y; Du, F; Li, F; He, X; Lin, X (2007). The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8): 1614-1621 Huner, B; Kisti, M; Uysal, S; Uzgoren, I; Ozdogan, E; Ogun Y; Demir, N & Kaya, M (2022). An Overview of Various Additive Manufacturing Technologies and Materials for Electrochemical Energy Conversion Applications. Published by American Chemical Society. IEEE-TD-299 (1997). IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures. Industrial Search (n.d). EMI Shielding. Retrieved from: https://www.iqsdirectory.com/ articles/emi-shielding.html Iyer, V; Chan, J & Gollakota, S (2017). 3D Printing Wireless Connected Objects. University of Washinhton, USA. Jiang, D; Murugadoss, V; Wang, Y, Lin, J; Ding, T, Wang, Z; Shao, Q; Wang, C; Liu, H; Lu, N; Wei, R; Subramania, A & Guo, Z (2019). Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. DOI: 10.1080/15583724.2018.1546737 K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, H. Friedrich (2017). 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling, Applied Materials Today, Volume 9. Pages 21-28, ISSN 2352-9407, https://doi.org/10.1016/j.apmt.2017.04.003 Kambiz Chizari, Mohammad Arjmand, Zhe Liu, Uttandaraman Sundararaj, Daniel Therriault (2017). Three-dimensional printing of highly conductive polymer nanocomposites for EMI shield ing applications, Materials Today Communications, Volume 11. Pages 112-118, ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2017.02.006. Kashi, S (2017). Graphene Nanoplatelet-based Nanocomposites: Electromagnetic Interference Shielding Properties and Rheology. RMIT University. Kumar, N & Thilagavathi, G (2012). Surface resistivity and EMI shielding Effectiveness of Polyaniline Coated Polyester Fabric. Journal of Textile and Apparel Technology and Management. Lundgren, U (2004). Characterization of components and materials for EMC barriers. PhD diss., Luluea University of Technology, Lulea, Sweden. M. Manoj Prabhakar, A.K. Saravanan, A. Haiter Lenin, I. Jerin leno, K. Mayandi, P. & Sethu Ramalingam (2021). A short review on 3D printing methods, process pa rameters and materials. Materials Today: Proceedings, Volume 45, Part 7, 2021, Pages 6108-6114, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.10.225.https://www. sciencedirect.com/science/article/pii/S2214785320378317 M. S. Sarto, S. Greco and A. Tamburrano, "Shielding Effectiveness of Protective Metallic Wire Meshes: EM Modeling and Validation," in IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 3, pp. 615-621, June 2014, doi: 10.1109/TEMC.2013.2292715. Magdowski, Mathias. (2021). Re: How can I calculate EMI shielding using S Parameters. Re trieved from: https://www.researchgate.net/post/How_can_I_calculate_EMI_shielding_ using_S_Parameters/61cd962ad92a9a7ff855a138/citation/download. Mansson, Daniel & Ellgardt, Anders. (2012). Comparing Analytical and Numerical Calculations of Shielding Effectiveness of Planar Metallic Meshes with Measurements in Cascaded Reverbera tion Chambers. Progress In Electromagnetics Research C. 31. 123-135. 10.2528/PIERC1206150 Mathworks (n.d). What are S-parameters [MATLAB]. Retrieved from: https: //www.mathworks.com/discovery/s-parameter.html$#:~:text=S$%2Dparameters%20(also% 20called%20S,standing%20wave%20ratio%20(VSWR). Mcillan, E.B (1958). Microwave radiation absorbers. US Patents 2,822,539. MIL-STD-285 (1956). Attenuation measurements for enclosures, electromagnetic shielding. Mitra, D.; Roy, S.; Striker, R.; Burczek, E.; Aqueeb, A.; Wolf, H.; Kabir, K.S.; Ye, S. & Braaten, B.D (2021). Conductive Electrifi and Nonconductive NinjaFlex Filaments based Flexible Microstrip Antenna for Changing Conformal Surface Applications. Electronics 2021, 10, 821. https://doi.org/10.3390/electronics10070821 Mitra, D; Striker, R; Cleveland, J; Braaten, B; Kabir, Kazi, S; Aqueeb, A; Burczek, E; Roy, S & Ye, S. (2021). A 3D Printed Microstrip Patch Antenna using Electrifi Filament for In-Space Manufacturing. 10.23919/USNC-URSINRSM51531.2021.9336501. Molyneux-Child, J. W (1997). EMC Shielding Materials. Oxford: Newnes. Multi3D (n.d). Electrifi Filament FAQ. Retrieved from: https://www.multi3dllc.com/faqs/ O'Connell, J (2022). It's All in the Filling 3D Printing Infill: The Basics for Optimal Results. Retrieved from: https://all3dp.com/2/ infill-3d-printing-what-it-means-and-how-to-use-it/#:~:text=Infill%20pattern% 20is%20the%20structure,are%20many%20different%20infill%20patterns. Ott, H (1988). Noise Reduction Techniques in Electronic Systems, 2nd ed. New York: John Wiley & Sons. Ravikumar Patel, Chirag Desai, Sagarsingh Kushwah, M.H. Mangrola (2022). A re view article on FDM process parameters in 3D printing for composite materials. Ma terials Today: Proceedings, Volume 60, Part 3, 2022. Pages 2162-2166, ISSN 2214- 7853, https://doi.org/10.1016/j.matpr.2022.02.385. https://www.sciencedirect.com/ science/article/pii/S2214785322010252. S. A. Schelkunoff, "The impedance concept and its application to problems of reflection, refrac tion, shielding and power absorption," in The Bell System Technical Journal, vol. 17, no. 1, pp. 17-48, Jan. 1938, doi: 10.1002/j.1538-7305.1938.tb00774.x. S. Roy, M. B. Qureshi, S. Asif and B. & D. Braaten (2017). A model for 3D-printed microstrip transmission lines using conductive electrifi filament. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 1099-1100, doi: 10.1109/APUSNCURSINRSM.2017.8072592. Saville, P (2005). A review of optimization techniques for layered radar absorb ing materials (Technical memorandum 2005-003). Defense R&D Canada. Retrieved from: http://pubs.drdc.gc.ca/PDFS/unc57 Sayan, R; Qureshi, M; Asif, S & Braaten, B (2017). A Model for 3D-Printed Microstrip Transmission Lines Using Conductive Electrifi Filament. IEEE North Dakota State University. Specialties (1998). Engineering Design and Shielding Product Selection Guide (acquired by Laird Technologies). Delaware Water Gap, PA. Tanner, H. A (1961) Fibrous microwave absorber. US Patent 2,977,591. Tecknit (1998). Electromagnetic Compatibility Design Guide. Retrieved from: http:// tecknit.com/REFA_I/EMIShieldingDesign.pdf Toscano (n.d). 3D printing profile and 3D printing parameters: how to choose printing settings to print a part. Retrieved from: https://www.roboze.com/en/resources/ 3d-printing-profile-and-3d-printing-parameters-how-to-choose-printing-settings-to-print-a-part. html TTC (2022). Trends in Electromagnetic Interference Shielding. Retrieved from: https:// ttconsultants.com/electromagnetic-interference-emi-shielding/ Uffelmann, S & Pestonik, S (2022). Investigation of the manufacturability of a copper coil for use in space components by means of the fused filament fabrication process. Retrieved from: https://link.springer.com/article/10.1007/s12567-022-00475-8#Sec2 Vance, E. F (1977). Shielding and grounding topology for interference control. Interaction Notes, C. E. Baum (Ed.), Air Force Weapons Laboratory, Note 306, Apr. 1977. Verma, P., Bansala, T., Singh, S., Kumar, s., Deveci, S & Kumar, S (2021). Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer com posites. Springer https://doi.org/10.1007/s10853-021-05985-0 Viskadourakis, Z; Vasilopoulos, C; Economou, N; Soukoulis, M & Kenanakis,G (2017). Electro magnetic shielding effectiveness of 3D printed polymer composites Wang, Lin Biao See, K.Y. & Chang, Richard, Dr. Weng-Yew & Lu, C.W. & Ng, S.T (2010). Electromagnetic shielding analysis of printed flexible meshed screens. 2010 Asia-Pacific Sympo sium on Electromagnetic Compatibility, APEMC 2010. 965 - 968. 10.1109/APEMC.2010.5475801 Wang, Wenping Liu, Yang. (2009). A Note on Planar Hexagonal Meshes. 10.1007/978-1-4419- 0999-2 9. Wiles, M (2008). Choosing right chamber depends on the application. Conformity. Retrieved from: http://www.conformity.com/PDFs/0802/0802_F5.pdf Zhiyangm, L; Gwendolyn, J; Koh, J; Li, Y; Ma, Y; Ding, J; Wang, J; Hu, Z; Wang, J; Chen, W & Chen, Y (2021). Design and Manufacture of 3D-Printed Batteries. Zimmer, S.; Helwig, M.;Winkler, A.; Modler, N. Modeling Electrical Conductivity of Metal Meshes for Predicting Shielding Effectiveness in Magnetic Fields of Wireless Power Transfer Sys tems. Electronics 2022, 11, 2156. https://doi.org/10.3390/electronics11142156 |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
94 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bc137cf9-8596-4eda-bb69-a00d0f9603e8/download https://repositorio.uniandes.edu.co/bitstreams/c1292e01-0c29-4758-be9b-8734f25bd0a5/download https://repositorio.uniandes.edu.co/bitstreams/aff3d783-f559-4139-b36d-999d4d78023f/download https://repositorio.uniandes.edu.co/bitstreams/ea4fb397-a2f4-4c3b-9291-ebc9f0cd345f/download https://repositorio.uniandes.edu.co/bitstreams/a67cc361-bb6f-414e-a8fd-0e7ec66ba96f/download https://repositorio.uniandes.edu.co/bitstreams/64be810f-8033-49ca-96eb-6201274c4c7c/download https://repositorio.uniandes.edu.co/bitstreams/6a4d1976-3b22-41c3-b41f-885cdc2f17f9/download https://repositorio.uniandes.edu.co/bitstreams/6a8b381d-25f1-4301-8517-de8bb8a8bb8e/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 5aa5c691a1ffe97abd12c2966efcb8d6 ad9b33b44f3fe6bbdcd52358724bee71 317cd71474e30463090bce64883b1081 5e75cb5fa53dfae8befa5f293ae418ca 58babcb5e3016c2bc10aada5adbf00ed 111085102453c52fc38c9986032c22a5 72b5998d4e94c80c2a2136ce9025e727 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133906621661184 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avila Bernal, Alba Graciela075725d8-68b7-4803-b9ee-4cf752c12dce600Pérez López, Carlos Andres21c2ecfd-eb01-4c29-9e3b-d9f65933d59f600Buitrón Burbano, Isabelac053226c-c47b-4854-953d-b5aed566c54e600Segura Quijano, Fredy Enrique2023-01-18T16:55:33Z2023-01-18T16:55:33Z2022-12-07http://hdl.handle.net/1992/63955instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Measurements and tests taken for this project were made using Universidad de los Andes' clean room and anechoic chamber laboratories.This project presents the electrical characterization of state-of-the-art material Multi3D's Electrifi 3D conductive filament, a nanocomposite. Since its exploration in 2017, numerous applications in RF circuits and antenna fabrication through additive manufacturing processes have been published. An area of use in electromagnetic interference shielding has been identified for this Electrifi filament but has yet to be properly characterized. This project aims to find a correlation between additive manufacturing printing parameters and electromagnetic interference shielding for Electrifi filament. For this purpose, 2 different Electrifi grid structures were designed and fabricated. Measurements of conductivity, impedance and the S11 and S21 parameters were taken to determine the performance of the Electrifi shields with different design configurations. The results point out that the definition of the printing parameters has a strong influence on the conductivity of the resulting 3D printed Electrifi meshes, producing remarkable variations at the electromagnetic interference shielding performance along with aperture dimensions on the grid.Ingeniero ElectrónicoPregradoElectromagnetic shieldingMaterials engineeringAdditive manufacturing94 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaElectromagnetic shielding with nanocomposites built with 3D-printing techniquesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TP3D printingConductive filamentElectrifiElectrical material characterizationElectromagnetic shieldingIngenieríaAbbasi, H; Antunes, M & Velasco, J (2019). Recent Advances in Carbon-based Polymer Nanocomposites for Electromagnetic Interference Shielding. p.36.Alsoufi, Mohammad & El-Sayed, Abdulrhman. (2017). Warping Deformation of Desktop 3D Printed Parts Manufactured by Open Source Fused Deposition Modeling (FDM) System. Inter national Journal of Mechanical Mechatronics Engineering. 17. 7-16.Ardavan, M (2020). Mitigating 5G Interference Signals In The C-Band. Retrieved from: http: //www.satmagazine.com/story.php?number=2132459167Bjorklof, D (1999). Shielding for EMC. Compliance Engineering. Retrieved from: http://www. cemag.com/99APG/Bjork137.htmlBodnar, D; Denny, H & Jenkins, B (1979). Shielding effectiveness measurements on conductive plastics. IEEE International Symposium on Electromagnetic Compatibility, 27-33.Castañeda-Uribe & Avila, A (2020). Enhancing Electromagnetic Interference Shielding Effective- ´ ness of Polymer Nanocomposites by Modifying Subsurface Carbon Nanotube Distribution. Doi: 10.1002/adem.202000707Chomerics (2000). EMI shielding theory. Retrieved from: http://chomerics.com/product/ documents/emicat/pg192theoryofemi.pdfChristopoulos, C (1995). Principles and Techniques of Electromagnetic Compatibility. Boca Ra ton, FL: CRC Press.Clayton, P (2006). Introduction to Electromagnetic Compatibility. John Wiley & SonsColin, X (2009). Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press Taylor & Francis Group.Ebrahimi, N.D. & Ju, Y.S (2018). Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments. Addit. Manuf. 24, 479-485.Emerson, W.H (1973). Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation 21(4): 484-490.F. Pizarro, R. Salazar, E. Rajo-Iglesias, M. Rodríguez, S. Fingerhuth & G. Hermosilla (2019). Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies. IEEE Access, vol. 7, pp. 106814-106823, 2019, doi: 10.1109/ACCESS.2019.2932912.Federal Communications Commission (2020). Auction 107: 3.7 GHz Service. Retrieved from: https://www.fcc.gov/auction/107/factsheetFlowers, P.F., et al (2018). 3D printing electronic components and circuits with conductive thermoplastic filament. Addit. Manuf. 18, 156-163Ganguly, S; Bhawal, P; Ravindren, R & Chandra, N (2018). Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. American Scientific Publishers. DOI: 10.1166/jnn.2018.15828Gaud, Brijesh. (2022). Re: How can I calculate EMI shielding using S Parameters. Re trieved from: https://www.researchgate.net/post/How_can_I_calculate_EMI_shielding_ using_S_Parameters/61ee75314acbf25e7859559a/citation/download.George, S (2017). Why Are Honeycomb Cells Hexagonal? [Science Fri day]. Retrieved from: https://www.sciencefriday.com/educational-resources/ why-do-bees-build-hexagonal-honeycomb-cells/Grimes, C. A., Mungle, C & Kouzoudis, D (2000). The 500 MHz to 5.5 GHz complex permittiv ity spectra of single-wall carbon nanotube-loaded polymer composites. Chemical physics Letters 319(5-6): 460-464.Guojian, Z (2011). Eliminates the Electromagnetic Interference Based on the PLC Configuration Software. From International Conference on Computer Science, Environment, Ecoinformatics, and Education. Pp 386-391. Springer.Hashemi, R (n.d). FDM 3D Printing of Conductive Polymer Nanocomposites: A novel process for functional and Smart Textile.Huang, Y; Li, N; Ma, Y; Du, F; Li, F; He, X; Lin, X (2007). The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8): 1614-1621Huner, B; Kisti, M; Uysal, S; Uzgoren, I; Ozdogan, E; Ogun Y; Demir, N & Kaya, M (2022). An Overview of Various Additive Manufacturing Technologies and Materials for Electrochemical Energy Conversion Applications. Published by American Chemical Society.IEEE-TD-299 (1997). IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures.Industrial Search (n.d). EMI Shielding. Retrieved from: https://www.iqsdirectory.com/ articles/emi-shielding.htmlIyer, V; Chan, J & Gollakota, S (2017). 3D Printing Wireless Connected Objects. University of Washinhton, USA.Jiang, D; Murugadoss, V; Wang, Y, Lin, J; Ding, T, Wang, Z; Shao, Q; Wang, C; Liu, H; Lu, N; Wei, R; Subramania, A & Guo, Z (2019). Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. DOI: 10.1080/15583724.2018.1546737K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, H. Friedrich (2017). 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling, Applied Materials Today, Volume 9. Pages 21-28, ISSN 2352-9407, https://doi.org/10.1016/j.apmt.2017.04.003Kambiz Chizari, Mohammad Arjmand, Zhe Liu, Uttandaraman Sundararaj, Daniel Therriault (2017). Three-dimensional printing of highly conductive polymer nanocomposites for EMI shield ing applications, Materials Today Communications, Volume 11. Pages 112-118, ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2017.02.006.Kashi, S (2017). Graphene Nanoplatelet-based Nanocomposites: Electromagnetic Interference Shielding Properties and Rheology. RMIT University.Kumar, N & Thilagavathi, G (2012). Surface resistivity and EMI shielding Effectiveness of Polyaniline Coated Polyester Fabric. Journal of Textile and Apparel Technology and Management.Lundgren, U (2004). Characterization of components and materials for EMC barriers. PhD diss., Luluea University of Technology, Lulea, Sweden.M. Manoj Prabhakar, A.K. Saravanan, A. Haiter Lenin, I. Jerin leno, K. Mayandi, P. & Sethu Ramalingam (2021). A short review on 3D printing methods, process pa rameters and materials. Materials Today: Proceedings, Volume 45, Part 7, 2021, Pages 6108-6114, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.10.225.https://www. sciencedirect.com/science/article/pii/S2214785320378317M. S. Sarto, S. Greco and A. Tamburrano, "Shielding Effectiveness of Protective Metallic Wire Meshes: EM Modeling and Validation," in IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 3, pp. 615-621, June 2014, doi: 10.1109/TEMC.2013.2292715.Magdowski, Mathias. (2021). Re: How can I calculate EMI shielding using S Parameters. Re trieved from: https://www.researchgate.net/post/How_can_I_calculate_EMI_shielding_ using_S_Parameters/61cd962ad92a9a7ff855a138/citation/download.Mansson, Daniel & Ellgardt, Anders. (2012). Comparing Analytical and Numerical Calculations of Shielding Effectiveness of Planar Metallic Meshes with Measurements in Cascaded Reverbera tion Chambers. Progress In Electromagnetics Research C. 31. 123-135. 10.2528/PIERC1206150Mathworks (n.d). What are S-parameters [MATLAB]. Retrieved from: https: //www.mathworks.com/discovery/s-parameter.html$#:~:text=S$%2Dparameters%20(also% 20called%20S,standing%20wave%20ratio%20(VSWR).Mcillan, E.B (1958). Microwave radiation absorbers. US Patents 2,822,539.MIL-STD-285 (1956). Attenuation measurements for enclosures, electromagnetic shielding.Mitra, D.; Roy, S.; Striker, R.; Burczek, E.; Aqueeb, A.; Wolf, H.; Kabir, K.S.; Ye, S. & Braaten, B.D (2021). Conductive Electrifi and Nonconductive NinjaFlex Filaments based Flexible Microstrip Antenna for Changing Conformal Surface Applications. Electronics 2021, 10, 821. https://doi.org/10.3390/electronics10070821Mitra, D; Striker, R; Cleveland, J; Braaten, B; Kabir, Kazi, S; Aqueeb, A; Burczek, E; Roy, S & Ye, S. (2021). A 3D Printed Microstrip Patch Antenna using Electrifi Filament for In-Space Manufacturing. 10.23919/USNC-URSINRSM51531.2021.9336501.Molyneux-Child, J. W (1997). EMC Shielding Materials. Oxford: Newnes.Multi3D (n.d). Electrifi Filament FAQ. Retrieved from: https://www.multi3dllc.com/faqs/O'Connell, J (2022). It's All in the Filling 3D Printing Infill: The Basics for Optimal Results. Retrieved from: https://all3dp.com/2/ infill-3d-printing-what-it-means-and-how-to-use-it/#:~:text=Infill%20pattern% 20is%20the%20structure,are%20many%20different%20infill%20patterns.Ott, H (1988). Noise Reduction Techniques in Electronic Systems, 2nd ed. New York: John Wiley & Sons.Ravikumar Patel, Chirag Desai, Sagarsingh Kushwah, M.H. Mangrola (2022). A re view article on FDM process parameters in 3D printing for composite materials. Ma terials Today: Proceedings, Volume 60, Part 3, 2022. Pages 2162-2166, ISSN 2214- 7853, https://doi.org/10.1016/j.matpr.2022.02.385. https://www.sciencedirect.com/ science/article/pii/S2214785322010252.S. A. Schelkunoff, "The impedance concept and its application to problems of reflection, refrac tion, shielding and power absorption," in The Bell System Technical Journal, vol. 17, no. 1, pp. 17-48, Jan. 1938, doi: 10.1002/j.1538-7305.1938.tb00774.x.S. Roy, M. B. Qureshi, S. Asif and B. & D. Braaten (2017). A model for 3D-printed microstrip transmission lines using conductive electrifi filament. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 1099-1100, doi: 10.1109/APUSNCURSINRSM.2017.8072592.Saville, P (2005). A review of optimization techniques for layered radar absorb ing materials (Technical memorandum 2005-003). Defense R&D Canada. Retrieved from: http://pubs.drdc.gc.ca/PDFS/unc57Sayan, R; Qureshi, M; Asif, S & Braaten, B (2017). A Model for 3D-Printed Microstrip Transmission Lines Using Conductive Electrifi Filament. IEEE North Dakota State University.Specialties (1998). Engineering Design and Shielding Product Selection Guide (acquired by Laird Technologies). Delaware Water Gap, PA.Tanner, H. A (1961) Fibrous microwave absorber. US Patent 2,977,591.Tecknit (1998). Electromagnetic Compatibility Design Guide. Retrieved from: http:// tecknit.com/REFA_I/EMIShieldingDesign.pdfToscano (n.d). 3D printing profile and 3D printing parameters: how to choose printing settings to print a part. Retrieved from: https://www.roboze.com/en/resources/ 3d-printing-profile-and-3d-printing-parameters-how-to-choose-printing-settings-to-print-a-part. htmlTTC (2022). Trends in Electromagnetic Interference Shielding. Retrieved from: https:// ttconsultants.com/electromagnetic-interference-emi-shielding/Uffelmann, S & Pestonik, S (2022). Investigation of the manufacturability of a copper coil for use in space components by means of the fused filament fabrication process. Retrieved from: https://link.springer.com/article/10.1007/s12567-022-00475-8#Sec2Vance, E. F (1977). Shielding and grounding topology for interference control. Interaction Notes, C. E. Baum (Ed.), Air Force Weapons Laboratory, Note 306, Apr. 1977.Verma, P., Bansala, T., Singh, S., Kumar, s., Deveci, S & Kumar, S (2021). Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer com posites. Springer https://doi.org/10.1007/s10853-021-05985-0Viskadourakis, Z; Vasilopoulos, C; Economou, N; Soukoulis, M & Kenanakis,G (2017). Electro magnetic shielding effectiveness of 3D printed polymer compositesWang, Lin Biao See, K.Y. & Chang, Richard, Dr. Weng-Yew & Lu, C.W. & Ng, S.T (2010). Electromagnetic shielding analysis of printed flexible meshed screens. 2010 Asia-Pacific Sympo sium on Electromagnetic Compatibility, APEMC 2010. 965 - 968. 10.1109/APEMC.2010.5475801Wang, Wenping Liu, Yang. (2009). A Note on Planar Hexagonal Meshes. 10.1007/978-1-4419- 0999-2 9.Wiles, M (2008). Choosing right chamber depends on the application. Conformity. Retrieved from: http://www.conformity.com/PDFs/0802/0802_F5.pdfZhiyangm, L; Gwendolyn, J; Koh, J; Li, Y; Ma, Y; Ding, J; Wang, J; Hu, Z; Wang, J; Chen, W & Chen, Y (2021). Design and Manufacture of 3D-Printed Batteries.Zimmer, S.; Helwig, M.;Winkler, A.; Modler, N. Modeling Electrical Conductivity of Metal Meshes for Predicting Shielding Effectiveness in Magnetic Fields of Wireless Power Transfer Sys tems. Electronics 2022, 11, 2156. https://doi.org/10.3390/electronics11142156201820765PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/bc137cf9-8596-4eda-bb69-a00d0f9603e8/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/c1292e01-0c29-4758-be9b-8734f25bd0a5/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALproyectoDeGrado_Buitron_VF.pdfproyectoDeGrado_Buitron_VF.pdfTrabajo de gradoapplication/pdf60400169https://repositorio.uniandes.edu.co/bitstreams/aff3d783-f559-4139-b36d-999d4d78023f/downloadad9b33b44f3fe6bbdcd52358724bee71MD54autorizacionEntregaTesisFirmado.pdfautorizacionEntregaTesisFirmado.pdfHIDEapplication/pdf331956https://repositorio.uniandes.edu.co/bitstreams/ea4fb397-a2f4-4c3b-9291-ebc9f0cd345f/download317cd71474e30463090bce64883b1081MD53THUMBNAILproyectoDeGrado_Buitron_VF.pdf.jpgproyectoDeGrado_Buitron_VF.pdf.jpgIM Thumbnailimage/jpeg11079https://repositorio.uniandes.edu.co/bitstreams/a67cc361-bb6f-414e-a8fd-0e7ec66ba96f/download5e75cb5fa53dfae8befa5f293ae418caMD56autorizacionEntregaTesisFirmado.pdf.jpgautorizacionEntregaTesisFirmado.pdf.jpgIM Thumbnailimage/jpeg15993https://repositorio.uniandes.edu.co/bitstreams/64be810f-8033-49ca-96eb-6201274c4c7c/download58babcb5e3016c2bc10aada5adbf00edMD58TEXTproyectoDeGrado_Buitron_VF.pdf.txtproyectoDeGrado_Buitron_VF.pdf.txtExtracted texttext/plain171914https://repositorio.uniandes.edu.co/bitstreams/6a4d1976-3b22-41c3-b41f-885cdc2f17f9/download111085102453c52fc38c9986032c22a5MD55autorizacionEntregaTesisFirmado.pdf.txtautorizacionEntregaTesisFirmado.pdf.txtExtracted texttext/plain1145https://repositorio.uniandes.edu.co/bitstreams/6a8b381d-25f1-4301-8517-de8bb8a8bb8e/download72b5998d4e94c80c2a2136ce9025e727MD571992/63955oai:repositorio.uniandes.edu.co:1992/639552023-10-10 16:54:21.145http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |