Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)

El desarrollo de sensores supramoleculares fluorescentes ha sido de interés debido a su bajo costo, respuesta rápida y alta sensibilidad. Se han desarrollado sensores supramoleculares con MOF de resorcinarenos y algunos basados en polímeros de coordinación pero su síntesis tiene una gran complejidad...

Full description

Autores:
Mongua Niño, Santiago José
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73354
Acceso en línea:
https://hdl.handle.net/1992/73354
Palabra clave:
C-etilresorcin[4]arenos
Fluorenona
Química
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_56092da80424c3e31371208ac63fd4b4
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73354
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
title Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
spellingShingle Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
C-etilresorcin[4]arenos
Fluorenona
Química
title_short Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
title_full Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
title_fullStr Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
title_full_unstemmed Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
title_sort Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)
dc.creator.fl_str_mv Mongua Niño, Santiago José
dc.contributor.advisor.none.fl_str_mv Vargas Escamilla, Edgar Francisco
dc.contributor.author.none.fl_str_mv Mongua Niño, Santiago José
dc.contributor.jury.none.fl_str_mv Moreno Piraján, Juan Carlos
Reiber, Andreas
Hurtado Belalcazar, John Jady
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Termodinámica de Soluciones
dc.subject.keyword.none.fl_str_mv C-etilresorcin[4]arenos
Fluorenona
topic C-etilresorcin[4]arenos
Fluorenona
Química
dc.subject.themes.spa.fl_str_mv Química
description El desarrollo de sensores supramoleculares fluorescentes ha sido de interés debido a su bajo costo, respuesta rápida y alta sensibilidad. Se han desarrollado sensores supramoleculares con MOF de resorcinarenos y algunos basados en polímeros de coordinación pero su síntesis tiene una gran complejidad y costo. Dado lo anterior, en este trabajo se desarrolló un estudio de las propiedades de acomplejamiento en solución de la fluorenona y el Cu (II) con el C-etilresorcin[4]areno mediante técnicas espectrofotométricas. Adicionalmente, se desarrolló un estudio volumétrico y sonométrico de la fluorenona en acetonitrilo para relacionarlo con el acomplejamiento observado con el C-etilresorcin[4]areno en solución.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-07
dc.date.accessioned.none.fl_str_mv 2024-01-19T15:10:15Z
dc.date.available.none.fl_str_mv 2024-01-19T15:10:15Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Audiovisual
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73354
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73354
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Guo, C.; Sedgwick, A. C.; Hirao, T.; Sessler, J. L. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021, 427, 213560. https://doi.org/https://doi.org/10.1016/j.ccr.2020.213560.
You, L.; Zha, D.; Anslyn, E. V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem Rev 2015, 115 (15), 7840–7892. https://doi.org/10.1021/cr5005524. 

Mako, T. L.; Racicot, J. M.; Levine, M. Supramolecular Luminescent Sensors. Chem Rev 2019, 119 (1), 322–477. https://doi.org/10.1021/acs.chemrev.8b00260. 

Eddaif, L.; Shaban, A.; Szendro, I. Calix[4]Resorcinarene Macrocycles Interactions with Cd2+, Hg2+, Pb2+, and Cu2+ Cations: A QCM-I and Langmuir Ultra-Thin Monolayers Study. Electroanalysis 2020, 32 (4), 755–766. https://doi.org/https://doi.org/10.1002/elan.201900651.
Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord Chem Rev 2012, 256 (1), 170–192. https://doi.org/https://doi.org/10.1016/j.ccr.2011.09.010. 

Vural Gürsel, I.; Noël, T.; Wang, Q.; Hessel, V. Separation/Recycling Methods for Homogeneous Transition Metal Catalysts in Continuous Flow. Green Chemistry 2015, 17 (4), 2012–2026. https://doi.org/10.1039/C4GC02160F. 

Panchal, U.; Modi, K.; Dey, S.; Prajapati, U.; Patel, C.; Jain, V. K. A Resorcinarene- Based “Turn-off” Fluorescence Sensor for 4-Nitrotoluene: Insights from Fluorescence and 1H NMR Titration with Computational Approach. J Lumin 2017, 184, 74–82. https://doi.org/https://doi.org/10.1016/j.jlumin.2016.11.066. 

Jain, V. K.; Pillai, S. G.; Pandya, R. A.; Agrawal, Y. K.; Shrivastav, P. S. Molecular Octopus: Octa Functionalized Calix[4]Resorcinarene-Hydroxamic Acid [C4RAHA] for Selective Extraction, Separation and Preconcentration of U(VI). Talanta 2005, 65 (2), 466–475. https://doi.org/https://doi.org/10.1016/j.talanta.2004.06.033. 

Riveros, D. Estudio de La Solvatación de C-Alquilresorcin[4]Arenos, Universidad de los Andes, Bogotá, 2016. 

Bhatt, K. D.; Gupte, H. S.; Makwana, B. A.; Vyas, D. J.; Maity, D.; Jain, V. K. Calix Receptor Edifice; Scrupulous Turn Off Fluorescent Sensor for Fe(III), Co(II) and Cu(II). J Fluoresc 2012, 22 (6), 1493–1500. https://doi.org/10.1007/s10895-012- 1086-5. 

Li, Y.; Csók, Z.; Szuroczki, P.; Kollár, L.; Kiss, L.; Kunsági-Máté, S. Fluorescence Quenching Studies on the Interaction of a Novel Deepened Cavitand towards Some Transition Metal Ions. Anal Chim Acta 2013, 799, 51–56. https://doi.org/https://doi.org/10.1016/j.aca.2013.09.013. 

Secenji, G.; Matisz, G.; Csók, Z.; Kollár, L.; Kunsági-Máté, S. Temperature- Dependent Fluorescence Quenching of a Cavitand Derivative by Copper Ions. Chem Phys Lett 2016, 657, 60–64. https://doi.org/https://doi.org/10.1016/j.cplett.2016.05.045.
Boxhall Philip C Bulman; Elsegood Mark R J; Chan Yohan; Heaney Harry; Holmes Kathryn E; McGrath Matthew J, J. Y. P. The Synthesis of Axially Chiral Resorcinarenes from Resorcinol Monoalkyl Ethers and Aldehyde Dimet hylacetals. Synlett 2003, 2003 (07), 1002–1006. https://doi.org/10.1055/s-2003-39294.
Botta, B.; Iacomacci, P.; Di Giovanni, C.; Delle Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.; Corelli, F.; Misiti, D. The Tetramerization of 2,4-Dimethoxycinnamates. A Novel Route to Calixarenes. J Org Chem 1992, 57 (12), 3259–3261. https://doi.org/10.1021/jo00038a001. 

Hoegberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J Org Chem 1980, 45 (22), 4498–4500. https://doi.org/10.1021/jo01310a046. 

Galindres Jiménez, D. M. Estudio Fisicoquímico de Resorcin[4]Arenos Sulfonatos y Su Interacción Con Albúmina de Suero Bovino. Uniandes 2019. http://hdl.handle.net/1992/41300 (accessed 2023-12-01).
Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J Org Chem 1991, 56 (19), 5527–5535. https://doi.org/10.1021/jo00019a011. 

Abis, L.; Dalcanale, E.; Du vosel, A.; Spera, S. Nuclear Magnetic Resonance Elucidation of Ring-Inversion Processes in Macrocyclic Octaols. Journal of the Chemical Society, Perkin Transactions 2 1990, No. 12, 2075–2080. https://doi.org/10.1039/P29900002075.
Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponi, G.; Callan, J. F. Iron(Iii) Selective Molecular and Supramolecular Fluorescent Probes. Chem Soc Rev 2012, 41 (21), 7195–7227. https://doi.org/10.1039/C2CS35152H. 

Brewster, M. E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv Drug Deliv Rev 2007, 59 (7), 645–666. https://doi.org/https://doi.org/10.1016/j.addr.2007.05.012. 

Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry. Angewandte Chemie International Edition 2013, 52 (46), 11998–12013. https://doi.org/https://doi.org/10.1002/anie.201304157. 

Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40 (3), 1305–1323. https://doi.org/10.1039/C0CS00062K. 

Roy, M. N.; Saha, S.; Barman, S.; Ekka, D. Host–Guest Inclusion Complexes of RNA Nucleosides inside Aqueous Cyclodextrins Explored by Physicochemical and Spectroscopic Methods. RSC Adv 2016, 6 (11), 8881–8891. https://doi.org/10.1039/C5RA24102B.
Wang, Z.; Cao, J.; Meng, F. Interactions between Protein-like and Humic-like Components in Dissolved Organic Matter Revealed by Fluorescence Quenching. Water Res 2015, 68, 404–413. https://doi.org/https://doi.org/10.1016/j.watres.2014.10.024. 

Ryan, D. K.; Weber, J. H. Fluorescence Quenching Titration for Determination of Complexing Capacities and Stability Constants of Fulvic Acid. Anal Chem 1982, 54 (6), 986–990. https://doi.org/10.1021/ac00243a033. 

Behera, P. K.; Mukherjee, T.; Mishra, A. K. Simultaneous Presence of Static and Dynamic Component in the Fluorescence Quenching for Substituted Naphthalene— 
CCl4 System. J Lumin 1995, 65 (3), 131–136. https://doi.org/https://doi.org/10.1016/0022-2313(95)00067-Z.
Moreno-Gómez, N.; Buchner, R.; Vargas, E. F. Temperature Effect on the Solvation of Two Ionic Resorcin[4]Arenes from Volumetric and Acoustic Properties in Polar Media. J Mol Liq 2019, 291, 111233. https://doi.org/10.1016/j.molliq.2019.111233.
Taylor, B. N.; Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1994, 1297. https://doi.org/10.6028/NIST.TN.1900.
Burakowski, A.; Gliński, J. Hydration Numbers of Nonelectrolytes from Acoustic Methods. Chem Rev 2012, 112 (4), 2059–2081. https://doi.org/10.1021/cr2000948. 

Iloukhani, H.; Almasi, M. Densities, Viscosities, Excess Molar Volumes, and Refractive Indices of Acetonitrile and 2-Alkanols Binary Mixtures at Different Temperatures: Experimental Results and Application of the Prigogine–Flory– Patterson Theory. Thermochim Acta 2009, 495 (1), 139–148. https://doi.org/https://doi.org/10.1016/j.tca.2009.06.015.
Krakowiak, J.; Grzybkowski, W. Apparent Molar Volume and Compressibility of Tetrabutylphosphonium Bromide in Various Solvents. J Chem Eng Data 2010, 55 (7), 2624–2629. https://doi.org/10.1021/je900888e. 

Basílio, N.; Garcia-Rio, L.; Martín-Pastor, M. Calixarene-Based Surfactants: Evidence of Structural Reorganization upon Micellization. Langmuir 2012, 28 (5), 2404–2414. https://doi.org/10.1021/la204004h.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 27 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Química
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Química
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/5ed0ae1f-a06a-4bfe-aba3-5e5aaa4e2329/download
https://repositorio.uniandes.edu.co/bitstreams/6226ff10-47ca-47e1-9d3b-0fe88a9e875f/download
https://repositorio.uniandes.edu.co/bitstreams/c0ed5e12-20f8-4f97-a470-c30a16d04c98/download
https://repositorio.uniandes.edu.co/bitstreams/746f8538-ebb7-45d3-9bf9-a104224aff9f/download
https://repositorio.uniandes.edu.co/bitstreams/15314cd7-a5d2-418e-bdb1-5dae4ac88126/download
https://repositorio.uniandes.edu.co/bitstreams/771a14fa-f769-4e7a-864b-b5d26a1b6e28/download
https://repositorio.uniandes.edu.co/bitstreams/aa206743-c760-45e4-877a-e6e0a4fe97a9/download
bitstream.checksum.fl_str_mv 9c80397c5dfefb4e012a6df97e07d6d9
db202bb3b37741011577a3a31eb49568
ae9e573a68e7f92501b6913cc846c39f
62e2da4ce860618d2c8de48b68f71424
eec27b24058ac9c0d1834d153c9f67fc
90f0775daca463707a3e8fb6a28056ad
49a409447fc8bf09be6ca60dfd968e7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390427046313984
spelling Vargas Escamilla, Edgar Franciscovirtual::109-1Mongua Niño, Santiago JoséMoreno Piraján, Juan Carlosvirtual::110-1Reiber, Andreasvirtual::111-1Hurtado Belalcazar, John Jadyvirtual::112-1Facultad de Ciencias::Termodinámica de Soluciones2024-01-19T15:10:15Z2024-01-19T15:10:15Z2023-12-07https://hdl.handle.net/1992/73354instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El desarrollo de sensores supramoleculares fluorescentes ha sido de interés debido a su bajo costo, respuesta rápida y alta sensibilidad. Se han desarrollado sensores supramoleculares con MOF de resorcinarenos y algunos basados en polímeros de coordinación pero su síntesis tiene una gran complejidad y costo. Dado lo anterior, en este trabajo se desarrolló un estudio de las propiedades de acomplejamiento en solución de la fluorenona y el Cu (II) con el C-etilresorcin[4]areno mediante técnicas espectrofotométricas. Adicionalmente, se desarrolló un estudio volumétrico y sonométrico de la fluorenona en acetonitrilo para relacionarlo con el acomplejamiento observado con el C-etilresorcin[4]areno en solución.Universidad de los AndesQuímicoPregradoQuímica Supramolecular27 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de Químicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estudio termodinámico y de acomplejamiento de C-etilresorcin [4] areno con fluorenona y Cu (II)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAudiovisualhttp://purl.org/redcol/resource_type/TPC-etilresorcin[4]arenosFluorenonaQuímicaGuo, C.; Sedgwick, A. C.; Hirao, T.; Sessler, J. L. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021, 427, 213560. https://doi.org/https://doi.org/10.1016/j.ccr.2020.213560.You, L.; Zha, D.; Anslyn, E. V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem Rev 2015, 115 (15), 7840–7892. https://doi.org/10.1021/cr5005524. 
Mako, T. L.; Racicot, J. M.; Levine, M. Supramolecular Luminescent Sensors. Chem Rev 2019, 119 (1), 322–477. https://doi.org/10.1021/acs.chemrev.8b00260. 
Eddaif, L.; Shaban, A.; Szendro, I. Calix[4]Resorcinarene Macrocycles Interactions with Cd2+, Hg2+, Pb2+, and Cu2+ Cations: A QCM-I and Langmuir Ultra-Thin Monolayers Study. Electroanalysis 2020, 32 (4), 755–766. https://doi.org/https://doi.org/10.1002/elan.201900651.Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord Chem Rev 2012, 256 (1), 170–192. https://doi.org/https://doi.org/10.1016/j.ccr.2011.09.010. 
Vural Gürsel, I.; Noël, T.; Wang, Q.; Hessel, V. Separation/Recycling Methods for Homogeneous Transition Metal Catalysts in Continuous Flow. Green Chemistry 2015, 17 (4), 2012–2026. https://doi.org/10.1039/C4GC02160F. 
Panchal, U.; Modi, K.; Dey, S.; Prajapati, U.; Patel, C.; Jain, V. K. A Resorcinarene- Based “Turn-off” Fluorescence Sensor for 4-Nitrotoluene: Insights from Fluorescence and 1H NMR Titration with Computational Approach. J Lumin 2017, 184, 74–82. https://doi.org/https://doi.org/10.1016/j.jlumin.2016.11.066. 
Jain, V. K.; Pillai, S. G.; Pandya, R. A.; Agrawal, Y. K.; Shrivastav, P. S. Molecular Octopus: Octa Functionalized Calix[4]Resorcinarene-Hydroxamic Acid [C4RAHA] for Selective Extraction, Separation and Preconcentration of U(VI). Talanta 2005, 65 (2), 466–475. https://doi.org/https://doi.org/10.1016/j.talanta.2004.06.033. 
Riveros, D. Estudio de La Solvatación de C-Alquilresorcin[4]Arenos, Universidad de los Andes, Bogotá, 2016. 
Bhatt, K. D.; Gupte, H. S.; Makwana, B. A.; Vyas, D. J.; Maity, D.; Jain, V. K. Calix Receptor Edifice; Scrupulous Turn Off Fluorescent Sensor for Fe(III), Co(II) and Cu(II). J Fluoresc 2012, 22 (6), 1493–1500. https://doi.org/10.1007/s10895-012- 1086-5. 
Li, Y.; Csók, Z.; Szuroczki, P.; Kollár, L.; Kiss, L.; Kunsági-Máté, S. Fluorescence Quenching Studies on the Interaction of a Novel Deepened Cavitand towards Some Transition Metal Ions. Anal Chim Acta 2013, 799, 51–56. https://doi.org/https://doi.org/10.1016/j.aca.2013.09.013. 
Secenji, G.; Matisz, G.; Csók, Z.; Kollár, L.; Kunsági-Máté, S. Temperature- Dependent Fluorescence Quenching of a Cavitand Derivative by Copper Ions. Chem Phys Lett 2016, 657, 60–64. https://doi.org/https://doi.org/10.1016/j.cplett.2016.05.045.Boxhall Philip C Bulman; Elsegood Mark R J; Chan Yohan; Heaney Harry; Holmes Kathryn E; McGrath Matthew J, J. Y. P. The Synthesis of Axially Chiral Resorcinarenes from Resorcinol Monoalkyl Ethers and Aldehyde Dimet hylacetals. Synlett 2003, 2003 (07), 1002–1006. https://doi.org/10.1055/s-2003-39294.Botta, B.; Iacomacci, P.; Di Giovanni, C.; Delle Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.; Corelli, F.; Misiti, D. The Tetramerization of 2,4-Dimethoxycinnamates. A Novel Route to Calixarenes. J Org Chem 1992, 57 (12), 3259–3261. https://doi.org/10.1021/jo00038a001. 
Hoegberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J Org Chem 1980, 45 (22), 4498–4500. https://doi.org/10.1021/jo01310a046. 
Galindres Jiménez, D. M. Estudio Fisicoquímico de Resorcin[4]Arenos Sulfonatos y Su Interacción Con Albúmina de Suero Bovino. Uniandes 2019. http://hdl.handle.net/1992/41300 (accessed 2023-12-01).Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J Org Chem 1991, 56 (19), 5527–5535. https://doi.org/10.1021/jo00019a011. 
Abis, L.; Dalcanale, E.; Du vosel, A.; Spera, S. Nuclear Magnetic Resonance Elucidation of Ring-Inversion Processes in Macrocyclic Octaols. Journal of the Chemical Society, Perkin Transactions 2 1990, No. 12, 2075–2080. https://doi.org/10.1039/P29900002075.Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponi, G.; Callan, J. F. Iron(Iii) Selective Molecular and Supramolecular Fluorescent Probes. Chem Soc Rev 2012, 41 (21), 7195–7227. https://doi.org/10.1039/C2CS35152H. 
Brewster, M. E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv Drug Deliv Rev 2007, 59 (7), 645–666. https://doi.org/https://doi.org/10.1016/j.addr.2007.05.012. 
Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry. Angewandte Chemie International Edition 2013, 52 (46), 11998–12013. https://doi.org/https://doi.org/10.1002/anie.201304157. 
Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40 (3), 1305–1323. https://doi.org/10.1039/C0CS00062K. 
Roy, M. N.; Saha, S.; Barman, S.; Ekka, D. Host–Guest Inclusion Complexes of RNA Nucleosides inside Aqueous Cyclodextrins Explored by Physicochemical and Spectroscopic Methods. RSC Adv 2016, 6 (11), 8881–8891. https://doi.org/10.1039/C5RA24102B.Wang, Z.; Cao, J.; Meng, F. Interactions between Protein-like and Humic-like Components in Dissolved Organic Matter Revealed by Fluorescence Quenching. Water Res 2015, 68, 404–413. https://doi.org/https://doi.org/10.1016/j.watres.2014.10.024. 
Ryan, D. K.; Weber, J. H. Fluorescence Quenching Titration for Determination of Complexing Capacities and Stability Constants of Fulvic Acid. Anal Chem 1982, 54 (6), 986–990. https://doi.org/10.1021/ac00243a033. 
Behera, P. K.; Mukherjee, T.; Mishra, A. K. Simultaneous Presence of Static and Dynamic Component in the Fluorescence Quenching for Substituted Naphthalene— 
CCl4 System. J Lumin 1995, 65 (3), 131–136. https://doi.org/https://doi.org/10.1016/0022-2313(95)00067-Z.Moreno-Gómez, N.; Buchner, R.; Vargas, E. F. Temperature Effect on the Solvation of Two Ionic Resorcin[4]Arenes from Volumetric and Acoustic Properties in Polar Media. J Mol Liq 2019, 291, 111233. https://doi.org/10.1016/j.molliq.2019.111233.Taylor, B. N.; Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1994, 1297. https://doi.org/10.6028/NIST.TN.1900.Burakowski, A.; Gliński, J. Hydration Numbers of Nonelectrolytes from Acoustic Methods. Chem Rev 2012, 112 (4), 2059–2081. https://doi.org/10.1021/cr2000948. 
Iloukhani, H.; Almasi, M. Densities, Viscosities, Excess Molar Volumes, and Refractive Indices of Acetonitrile and 2-Alkanols Binary Mixtures at Different Temperatures: Experimental Results and Application of the Prigogine–Flory– Patterson Theory. Thermochim Acta 2009, 495 (1), 139–148. https://doi.org/https://doi.org/10.1016/j.tca.2009.06.015.Krakowiak, J.; Grzybkowski, W. Apparent Molar Volume and Compressibility of Tetrabutylphosphonium Bromide in Various Solvents. J Chem Eng Data 2010, 55 (7), 2624–2629. https://doi.org/10.1021/je900888e. 
Basílio, N.; Garcia-Rio, L.; Martín-Pastor, M. Calixarene-Based Surfactants: Evidence of Structural Reorganization upon Micellization. Langmuir 2012, 28 (5), 2404–2414. https://doi.org/10.1021/la204004h.202012703Publicationhttps://scholar.google.es/citations?user=jXtWpzEAAAAJvirtual::112-10000-0001-9880-4696virtual::110-10000-0002-0511-9719virtual::112-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000018716virtual::109-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000095885virtual::110-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000568201virtual::111-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001192175virtual::112-1af23fccc-387b-4277-9629-38891335563avirtual::109-1af23fccc-387b-4277-9629-38891335563avirtual::109-191b6cfcd-3340-433b-9cc0-699ec733f19bvirtual::110-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::111-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::112-191b6cfcd-3340-433b-9cc0-699ec733f19bvirtual::110-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::111-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::112-1ORIGINALEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdfEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdfapplication/pdf896380https://repositorio.uniandes.edu.co/bitstreams/5ed0ae1f-a06a-4bfe-aba3-5e5aaa4e2329/download9c80397c5dfefb4e012a6df97e07d6d9MD51Autorizacion tesis Santiago.pdfAutorizacion tesis Santiago.pdfHIDEapplication/pdf370886https://repositorio.uniandes.edu.co/bitstreams/6226ff10-47ca-47e1-9d3b-0fe88a9e875f/downloaddb202bb3b37741011577a3a31eb49568MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c0ed5e12-20f8-4f97-a470-c30a16d04c98/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdf.txtEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdf.txtExtracted texttext/plain43071https://repositorio.uniandes.edu.co/bitstreams/746f8538-ebb7-45d3-9bf9-a104224aff9f/download62e2da4ce860618d2c8de48b68f71424MD54Autorizacion tesis Santiago.pdf.txtAutorizacion tesis Santiago.pdf.txtExtracted texttext/plain1984https://repositorio.uniandes.edu.co/bitstreams/15314cd7-a5d2-418e-bdb1-5dae4ac88126/downloadeec27b24058ac9c0d1834d153c9f67fcMD56THUMBNAILEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdf.jpgEstudio termodinámico y de acomplejamiento de C-etilresorcin 4 areno con fluorenona y Cu II.pdf.jpgGenerated Thumbnailimage/jpeg6719https://repositorio.uniandes.edu.co/bitstreams/771a14fa-f769-4e7a-864b-b5d26a1b6e28/download90f0775daca463707a3e8fb6a28056adMD55Autorizacion tesis Santiago.pdf.jpgAutorizacion tesis Santiago.pdf.jpgGenerated Thumbnailimage/jpeg10797https://repositorio.uniandes.edu.co/bitstreams/aa206743-c760-45e4-877a-e6e0a4fe97a9/download49a409447fc8bf09be6ca60dfd968e7fMD571992/73354oai:repositorio.uniandes.edu.co:1992/733542024-01-20 03:11:47.367https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K