Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector

Beyond standard model (BSM) theories have proposed additional neutral boson particles that could provide insights into the Standard Model's issues \cite{bsm}. For instance, searches have been performed for a neutral gauge boson called $Z'$, a particle with similar properties to the neutral...

Full description

Autores:
Fraga Flores, Jorge Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73562
Acceso en línea:
https://hdl.handle.net/1992/73562
Palabra clave:
CMS experiment
LHC
Proton-proton collisions
Z prime
Beyond Standard Model
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_55a97a23bb75fe204fc377191fcf5a8f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73562
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
title Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
spellingShingle Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
CMS experiment
LHC
Proton-proton collisions
Z prime
Beyond Standard Model
Física
title_short Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
title_full Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
title_fullStr Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
title_full_unstemmed Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
title_sort Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detector
dc.creator.fl_str_mv Fraga Flores, Jorge Fernando
dc.contributor.advisor.none.fl_str_mv Ávila Bernal, Carlos Arturo
dc.contributor.author.none.fl_str_mv Fraga Flores, Jorge Fernando
dc.contributor.jury.none.fl_str_mv Gómez Moreno, Bernardo
Francesco Romeo
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Grupo de Fisica de Altas energias de la Universidad de los Andes
dc.subject.keyword.eng.fl_str_mv CMS experiment
LHC
Proton-proton collisions
Z prime
Beyond Standard Model
topic CMS experiment
LHC
Proton-proton collisions
Z prime
Beyond Standard Model
Física
dc.subject.themes.spa.fl_str_mv Física
description Beyond standard model (BSM) theories have proposed additional neutral boson particles that could provide insights into the Standard Model's issues \cite{bsm}. For instance, searches have been performed for a neutral gauge boson called $Z'$, a particle with similar properties to the neutral $Z$ massive boson from the SM. There are many ways to generate additional neutral gauge bosons, like extending the SM symmetries or from other frameworks like Grand Unified Theories (GUT), string theories, and extensions of the SM. Finding a $Z'$ boson would have exciting implications because requiring additional gauge $U(1)'$ symmetries would generate an extended Higgs sector and, in the case of supersymmetric models, extended neutralino sectors \cite{zprime}. $Z'$ boson searches are well motivated by those BSM scenarios that predict these particles with masses at the TeV order \cite{cdf,dzero} since these would be produced at the current energies of the Large Hadron Collider (LHC) at CERN \cite{atlas,cms}. In the current $Z'$ boson searches, there is an interest in models that include extra neutral gauge bosons that decay into pairs of high-transverse momentum tau leptons, like for example the sequential standard model (SSM) \cite{ssm}, which predicts a neutral spin-1 boson, denoted $Z'_{SSM}$. Since the tau lepton has different decay modes, the search for $Z'$ bosons involves four possible final state experimental signatures: $\tau_h\tau_h$, $\tau_h\tau_e$, $\tau_h\tau_\mu$ and $\tau_e\tau_\mu$ where $\tau_h$ is a tau lepton that decays hadronically and $\tau_e$ ($\tau_\mu$) is a tau lepton that has an electron (muon) in the final state. In the present graduate thesis, we search for signatures of the production of a $Z'$ boson within the SSM framework in the final state channel $Z'\rightarrow \tau_h\tau_\mu$. We analyze proton-proton collisions at a center of mass energy of $\sqrt{s}=13$ TeV, corresponding to data collected by the CMS experiment during the full LHC-Run 2. The hypothetical experimental signature of a $Z'$ can be obtained, through its tau lepton decays, on events with oppositely charged and almost back-to-back tau pairs with high transverse momentum. Missing transverse energy (MET) is expected in the signal events since neutrinos are produced in the tau decay chain, therefore, we look for a broad enhancement in the reconstructed mass distribution from MET, the tau, and muon leptons. We have performed optimization studies in the topological kinematical selections to maximize the signal significance over backgrounds. We have proposed control regions with orthogonal requirements to the signal region, to verify the MC simulation for backgrounds, and in the case of QCD we have implemented data-driven methods. After unblinding the signal region, no excess above the SM backgrounds has been observed as possible evidence of a $Z'$ boson, therefore, we have expanded the exclusion limits of the $Z'\rightarrow \tau_h\tau_\mu$ channel up to masses of 3150 GeV.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-29T16:55:03Z
dc.date.available.none.fl_str_mv 2024-01-29T16:55:03Z
dc.date.issued.none.fl_str_mv 2024-01-24
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73562
dc.identifier.doi.none.fl_str_mv 10.57784/1992/73562
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73562
identifier_str_mv 10.57784/1992/73562
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] Y. Nagashima. Beyond the Standard Model of Elementary Particle Physics. (Wiley-VCH Verlag GmbH & Co., Weinheim, 2014)
[2] P. Langacker. The Physics of Heavy Z Gauge Bosons. Rev. Mod. Phys. 81 (2009), 1199.1228.[arXiv:0801.1345]
[3] DO Collaboration. Search for a heavy neutral gauge boson in the dielectron channel with 5.4fb-1 of ppbar collisions at ./s = 1.96 TeV. Phys. Lett. B 695 (2011). [arXiv:1008.2023.]
[4] The CDF Collaboration. Search for High Mass Resonances Decaying to Muon Pairs in /s =1.96 TeV pp Collisions. Phys. Rev. Lett. 106 (2011). [arXiv:1101.4578.]
[5] The CDF Collaboration. Search for High-Mass e+e- Resonances in pp Collisions at s=1.96 TeV. Phys. Rev. Lett. 102, 059901 (2009). [arXiv:0810.2059.|
[6] ATLAS Collaboration, M. Aaboud et al. Search for new high-mass phenomena in the dilepton final state using 36 fo! of proton-proton collision data at \/s = 13 TeV with the ATLAS detector. JHEP 10 (2017), 182. [arXiv:1707.02424.]
[7] CMS collaboration. Search for narrow resonances in dilepton mass spectra in proton ?proton collisions at ./s = 13 TeV and combination with 8 TeV data. Phys. Lett. B 768 (2017), 57-80.[arXiv:1609.05391]
[8] G. Altarelli et al. Searching for New Heavy Vector Bosons in p-p Colliders. Z. Phys. C45 (1989), 109. [Erratum: Z. Phys.C47,676(1990)].
[9] M. Frank, L. Selbuz, I. Turan. Heavy Z Bosons in the Secluded U(1) Model at Hadron Colliders. Eur. Phys. J. C 81 (2021) 5, 466. [arXiv:2007.00676]
[10] B. Allanach, J. Butterworth, and T. Corbett. Collider constraints on Z models for neutral current B-anomalies JHEP 08 (2019) 106. [arXiv:1904.10954]
[11] Giorgio Arcadi, Lorenzo Calibbi, Marco Fedele, Federico Mescia. Muon g-2 and B-anomalies from Dark Matter. Phys. Rev. Lett. 127, 061802 (2021). [arXiv:2104.03228]
[12] J. L. Hewett et al. Low-Energy Phenomenology of Superstring Inspired E(6) Models. Phys. Rept. 183 (1989), 193.
[13] LHCb Collaboration. Measurement of lepton universality parameters in Bt + Kt£*£- and B® + K*°¢+¢- decays. Phys. Rev. D 108, 032002 (2023). [arXiv:2212.09153]
[14] Ken Hsieh, Kai Schmitz, Jiang-Hao Yu, C.-P. Yuan. Global Analysis of General SU(2) x SU(2) x U(1) Models with Precision Data. Phys. Rev. D82:035011 (2010). [arXiv:1003.3482]
[15]A. Florez et al. Searching for New Heavy Neutral Gauge Bosons using Vector Boson Fusion Processes at the LHC. Phys. Lett. B 767 (2017) 126-132. [arXiv:1609.09765]
[16]M. Abdullah et al. Bottom-quark fusion processes at the LHC for probing Z’ models and B- meson decay anomalies. Phys. Rev. D 97 (2018), no. 7, 075035. [arXiv:1707.07016]
[17]R.S. Chivukula, E.H. Simmons. Electroweak Limits on Non-Universal Z’ Bosons. Phys.Rev.D66:015006,2002. [arXiv:hep-ph0205064]
[18]CMS Collaboration. Search for high-mass resonances decaying into T-lepton pairs in pp collisions at ,/s = 7 TeV. Phys. Lett. B716 (2012), 82-102. [arXiv:1206.1725.]
[19]ATLAS Collaboration. A search for high-mass resonances decaying to T+r~ in pp collisions at ./s =8 TeV with the ATLAS detector. JHEPO7 (2015) 157. [arXiv:1502.07177.]
[20]CMS Collaboration. Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at \/s = 13 TeV. JHEP 02 (2017), 048. [arXiv:1611.06594.]
[21]ATLAS Collaboration. Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fo— of pp collisions at »/s = 13 TeV with the ATLAS detector. JHEP01 (2018), 055. [arXiv:1709.07242.]
[22]CMS Collaboration. Search for Heavy Neutral Resonances Decaying to Tau Lepton Pairs at CMS. Technical Report CMS AN-20-134, CERN, Geneva, 2022.
[23]Paul Langacker. The Standard Model and Beyond. (Taylor & Francis, Boca Raton, 2009)
[24]Brenda Fabela. Search for Compressed Supersymmetry in Electroweak Vector Boson Fusion Topologies with 0-, 1-, and 2- Low Energy Lepton Final States in Proton-Proton Collisions at /s = 13 TeV PhD Thesis. Vanderbilt University (2022).
[25]John Campbell, Joey Huston and Frank Krauss. The Black Book of Quantum Chromodynamics: A Primer for the LHC Era. (Oxford University Press, Oxford, 2018)
[26]R.L. Workman et al. (Particle Data Group). Z’ -Boson Searches. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
[27]Yuval Grossman and Yossi Nir. The Standard Model: From Fundamental Symmetries to Experimental Tests. (Princeton University Press, 2023)
[28]G. Senjanovic et al. Exact Lefi-Right Symmetry and Spontaneous Violation of Parity. Phys.Rev. D12 (1975), 1502. [arXiv:0905.3220]
[29]C. T. Hill et al. Strong dynamics and electroweak symmetry breaking. Phys. Rept. 381 (2003),235-402. Erratum: Phys. Rept.390,553(2004). [arXiv:hep-ph/0203079]
[30]R. Diener et al. Unravelling an Extra Neutral Gauge Boson at the LHC using Third Generation Fermions. Phys. Rev. D83 (2011), 115008. [arXiv:1006.2845.]
[31]C. T. Hill. Topcolor assisted technicolor. Phys. Lett. B345:483-489, 1995. [arXiv:hep-ph/9411426.]
[32]T. Han et. al. Phenomenology of the little Higgs model. Phys. Rev. D67 (2003), 095004.[arXiv:hep-ph/0301040.]
[33]Mark Thomson. Modern Particle Physics. (Cambridge University Press, Cambridge, 2013)
[34]The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group. A Combination of preliminary electroweak measurements and constraints on the standard model. CERN-PH-EP/2005-051.[arXiv:hep-ex/0511027.]
[35]CMS Collaboration. Search for high-mass resonances in dilepton final states in proton-proton collisions at ,/s = 13 TeV. JHEP 06 (2018), 120. [arXiv:1803.06292.]
[36]ATLAS Collaboration. Search for high-mass dilepton resonances using 139 fo! of pp collision data collected at ./s = 13 TeV with the ATLAS detector. Phys. Lett. B 796 (2019) 68.[arXiv:1903.06248.]
[37]ATLAS Collaboration. Search for high-mass dilepton resonances using 139 fo- of pp collision data collected at ,/s = 13 TeV with the ATLAS detector. Phys. Lett. B 796 (2019) 68.[arXiv:1903.06248.]
[38]CMS Collaboration. Search for high-mass resonances and large extra dimensions with tau-lepton pairs decaying into final states with an electron and a muon at \/s = 8 TeV. Tech. Rep.CMS-PAS-EXO-12-046. CERN, Geneva (2015).
[39]Felipe Gonzales. Search for Z’ bosons decaying into tau pairs in pp collisions at /s =13 TeV with the CMS detector. Ph.D. Thesis. CERN-THESIS-2018-139. Universidad de los Andes.(Bogota, 2018)
[40]Maurizio Vretenar (Ed.) High-Luminosity Large Hadron Collider (HL-LHC). CERN Yellow Reports: Monographs. CERN-2020-010. (CERN, Geneva, 2020)
[41]CERN. [SOLDE—ISOLDE. https://isolde.cern/ (2023)
[42]CERN. CERN-MEDICIS WEBSITE. https://medicis.cern/ (2023)
[43]M.A. Fraser, et al. Status of the HIE-ISOLDE project at CERN. [arXiv:1707.05129]
[44]J. Lerendegui-Marco, A. Casanovas, V. Alcayne, the n_-TOF Collaboration. New perspectives for neutron capture measurements in the upgraded CERN-n_TOF Facility. [arXiv:2303.08724]
[45]Jasper Kirkby. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber. [arXiv:physics/0104041 [physics.ao-ph]
[46]CERN. PS-IRRAD Proton Facility. https: //ps-irrad.web.cern.ch (2023) CERN.
[47] CERN High energy AcceleRator Mized field. https://charm.web.cern.ch/ (2023)
[48]Boris Grube (for the COMPASS collaboration). Recent Results on Spectroscopy from COMPASS. [arXiv:1512.03599 [hep-ex]
[49]Haradhan Adhikary (for the NA61/SHINE Collaboration). Search for the QCD critical point by NA61/SHINE at the CERN SPS. [arXiv:2308.04254 |nucl-ex]]
[50]E. Gschwendtner, et. al. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. [arXiv:1512.05498 [physics.acc-phl]]
[51]CERN. The HiRadMat Facility at SPS. https://hiradmat.web.cern.ch/ (2023)
[52]ALICE Collaboration. The ALICE experiment — A journey through QCD. CERN-EP-2022-227. [arXiv:2211.04384]
[53]ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider: A Description of the Detector Configuration for Run 8. CERN-EP-2022-259. [arXiv:2305.16623]
[54]Belyaev, I., Carboni, G., Harnew, N. et al. The history of LHCb. EPJ H 46, 3 (2021).[arXiv:2101.05331]
[55]E. Gschwendtner, et. al. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. [arXiv:1512.05498 [physics.acc-ph]|
[56]Eugenio Berti (for the LHCf collaboration). The LHCf experiment: present status and physics results. [arXiv:1710.03991 [hep-ex]
[57]Mariana Frank, et. al. Searching for Heavy Neutrinos with the MoEDAL-MAPP Detector at the LHC. [arXiv:1909.05216 [hep-ph]
[58]Brian Petersen (for the FASER Collaboration). First Physics Results from the FASER Experiment. [arXiv:2305.08665 [hep-ex]]
[59]Ettore Zaffaroni (for the SND@LHC collaboration). Results from SND@LHC. [arXiv:2310.15791 [hep-ex]
[60]CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716 (2012) 30. [arXiv:1207.7235.]
[61]ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett. B716 (2012) 1-29. [arXiv:1207.7214,]
[62]Christiane Lefevre. The CERN accelerator compler. CERN Document Server. http://cds.cern.ch/record/1260465. 2008
[63]ATLAS Collaboration Precision luminosity measurement in proton-proton collisions at /s = 13 TeV in 2015 and 2016 at CMSC. Eur. Phys. J. C 81 (2021) 800. [arXiv:2104.01927]
[64]J. T. Boyd. LHC Run-2 and Future Prospects. arXiv:2001.04370 [hep-ex] (2020)
[65]CMS Collaboration. The CMS experiment at the CERN LHC. JINST 3 (2008) S08004.
[66]CMS Collaboration. CMS Physics: Technical Design Report Volume 1: Detector Performance and Software. Technical Design Report CERN-LHCC-2006-001, CMS-TDR-8-1, CERN-LHCC-2006-001, CMS-TDR-8-1. CERN, Geneva (2006).
[67]CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003. [arXiv:1706.04965]
[68] Thomas Lenzi. Development and Study of Different Muon Track Reconstruction Algorithms for the Level-1 Trigger for the CMS Muon Upgrade with GEM Detectors. PhD Thesis. Université Libre de Bruxelles (2013).
[69] CMS Collaboration. Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays. JINST 5:T03021,2010. [arXiv:0910.5530.]
[70] CMS Collaboration. Precision measurement of the structure of the CMS inner tracking system using nuclear interactions. JINST 13 (2018) P10034. [arXiv:1807.03289.]
[71] K. W. Bell et al. Vacuum phototriodes for the CMS electromagnetic calorimeter endcap. IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2284-2287. (2004)
[72] CMS Collaboration. Performance and Operation of the CMS Electromagnetic Calorimeter. JINST 5:T03010,2010. [arXiv:0910.3423.|
[73] CMS Collaboration. Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data. CMS-PRF-22-001, CERN-EP-2023-093.[arXiv:2306.10355.]
[74] CMS Collaboration. Performance of CMS muon reconstruction in pp collision events at ./s = 7. JINST 7 (2012) P10002. [arXiv:1206.4071.]
[75] Contardo, Didier; Ball, Austin. The Phase-2 Upgrade of the CMS Muon Detectors. CERN-LHCC-2017-012 ; CMS-TDR-016.
[76] Joshi, Bhargav Madhusudan. Projected performance of CMS Cathode Strip Chambers at HL-LHC. PoS LHCP2018 (2018) 074.
[77] Shivali Malhotra. GEM Detectors for the Upgrade of the CMS Muon Spectrometer. J. Phys.: Conf. Ser. 2374 012154 (2022).
[78] CMS Collaboration. CMS RPC background — studies and measurements. JINST 16 C04005. [arXiv:2005.12769.]
[79] J. Brooke (on behalf of the CMS Collaboration). Performance of the CMS Level-1 Trigger. [arXiv:1302.2469.]
[80] Jeitler, Manfred. Upgrade of the trigger system of CMS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 718, 2018, Pages 11-15.
[81] Alejandro Segura. Search for compressed supersymmetry at the LHC in final states with one hadronic tau and one energetic jet. Ph.D. Thesis. CERN-THESIS-2020-193. Universidad de los Andes. (Bogota, 2019)
[82] Rende Steerenberg, LHC Report: Back in production, (11 July, 2018) https: / /home.cern/news/news/accelerators/lhc-report-final-days-run-2
[83] Xiaocong Ai, Georgiana Mania, Heather M. Gray, Michael Kuhn, Nicholas Styles. A GPU-based Kalman Filter for Track Fitting. Comput Softw Big Sci 5, 20 (2021). [arXiv:2105.01796.]
[84] CMS Collaboration. Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at ./s = 8 TeV. JINST 10 (2015) PO6005. [arXiv:1502.02701]
[85] CMS Collaboration, CMS Physics Technical Design Report Volume I: Detector Performance and Software. Technical Design Report. CMS-TDR-008-1 (2006)
[86] CMS Collaboration. Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC. JINST 16 (2021) P05014. [arXiv:2012.06888]
[87] CMS-EgammaPOG. HEEP Electron ID and isolation. https://twiki.cern.ch/twiki/bin/view/CMS/HEEPElectronIdentificationRun2. 2021
[88] Wenxing Fang. Search for new physics in dilepton final states at the CMS experiment. PhD Thesis. Université libre de Bruxelles (2019).
[89] CMS-MuonPOG. Baseline muon selections for Run-I. MuonWikiHome (2021)
[90] CMS Collaboration. Performance of tau-lepton reconstruction and identification in CMS. JINST 7 (2012) P01001. [arXiv:1109.6034.]
[91] K. A. Olive et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C38 (2014).
[92] CMS Collaboration. Identification of hadronic tau lepton decays using a deep neural network. CMS-TAU-20-001. [arXiv:2201.08458.]
[93] Sebastien Brommer Janek Bechtel. Tau leptons. Talk presented at the 2019 CMS Physics Object School. Last accessed: 12/02/2022. URL https://indico.cern.ch/event /797855/
[94] CMS Collaboration. Performance of reconstruction and identification of t leptons decaying to hadrons and v, in pp collisions at ,/s = 13 TeV. JINST 13 (2018) P10005. [arXiv:1809.02816.]
[95] CMS-TauPOG. Tau ID recommendations for Run-2: 2016, 2017, and 2018. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/TauIDRecommendationForRun2. 2022
[96] Savanna Starko. Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft Tau Lepton, a Highly Energetic Jet, and Large Missing Transverse Momentum in Proton-Proton Collisions at 13 TeV. Ph.D. Thesis. Vanderbilt University (2020).
[97| CMS Collaboration. Search for a heavy neutral gauge boson using Vector Boson Fusion processes. Technical Report CMS AN-18-200, CERN, Geneva, 2022.
[98] R. Atkin. Review of jet reconstruction algorithms. J. Phys. Conf. Ser. 645 (2015)(1), 012008.
[99] Matteo Cacciari, Gavin P. Salam, Gregory Soyez The anti-k;, jet clustering algorithm J. High Energy Phys. JHEP04(2008) [arXiv:0802.1189]
[100] CMS-JES. Introduction to Jet Energy Corrections at CMS. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/IntroToJEC. 2016.
[101] CMS Collaboration. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 [arXiv:1607.03663 [hep-ex]
[102] CMS Collaboration. Jet energy scale and resolution performance with 138 TeV data collected by CMS in 2016-2018. CERN-CMS-DP-2020-019. (2020)
[103] CMS Collaboration. Jet algorithms performance in 18 TeV data. CMS-PAS-JME-16-003. Geneva, (2017)
[104] Izaak Neutelings. Impact parameters of B hadron decay. Graphics with TikZ in LaTeX. (2021)
[105] S. Chatrchyan et al. (CMS). Identification of b-quark jets with the CMS experiment. JINST 8 (2013), P04013. arXiv:1211.4462.
[106] CMS Collaboration. Performance of b-jet identification in CMS. CMS PAS BTV-11-001. Geneva, (2011)
[107] C. Weiser. A Combined Secondary Verter Based B-Tagging Algorithm in CMS. CMS-NOTE-2006-014. Geneva, (2006)
[108] CMS Collaboration. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 [arXiv:1712.07158]
[109] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, [arXiv:1603.04467]
[110] Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. [arXiv:1502.01852|
[111] CMS-BtagPOG. Recommendation for Using b-tag Objects in Physics Analyses. https: / /twiki.cern.ch/twiki/bin/view/CMS/BtagRecommendation. 2022
[112] CMS-BtagPOG. Methods to apply b-tagging efficiency scale _—_ factors. https: / /twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods. 2022
[113] CMS Collaboration. Missing transverse energy performance of the CMS detector JINST 6 (2011) 09001 [arXiv:1106.5048]
[114] Abdellah Tnourji, Emilien Chapon, David D’enterria. Missing Transverse energy in PbPb collision in LHC with CMS detector. CERN Document Server, CERN, In press. jhal-02051404;
[115] CMS Collaboration. Performance of missing transverse momentum reconstruction in proton-proton collisions at ./s = 13 TeV using the CMS detector. JINST 14(07) P07004 [arXiv:1903.06078]
[116] CMS-JetMET. MET Filter Recommendations for Run I. https: / /twiki.cern.ch/twiki/bin/view/CMS/MissingET OptionalFiltersRun2. 2022
[117] Kevin Stenson . Reconstructing a multitude of particle tracks within CMS. (2012) http://cms.web.cern.ch/news/ Web. April 23, 2017.
[118] CMS-PVTMain. Utilities for Accessing Pileup Information for Data. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/PileupJSONFileforData. 2022.
[119] CMS Collaboration. Pileup mitigation at CMS in 13 TeV data. JINST 15 (2020) P09018.[arXiv:2003.00503]
[120] CMS Collaboration. Pileup mitigation at CMS in 13 TeV data. JINST 15 (2020) P09018.[arXiv:2003.00503]
[121] Matteo Cacciari, Gavin P. Salam. Pileup subtraction using jet areas. Phys.Lett.B659:119-126,2008. [arXiv:0707.1378]
[122] CMS-JME group. Reweighing recipe to emulate Level 1 ECAL pre-firing. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/LIECALPrefiringWeightRecipe. 2022
[123] L. Thomas, J. Damgov. EE noise mitigation in 2017 (2017 MET recipe v2). https: / /indico.cern.ch/event/759372/contributions/3149378 /attachments/ 1721436 /2802416/metreport.pdf. 2022.
[124] CMS Collaboration. Search for disappearing tracks in proton-proton collisions at /s = 13 TeV. Phys. Lett. B 806 (2020) 135502. [arXiv:2004.05153.]
[125] CMS Collaboration. Lumi Recomendations for Run 2. https: //twiki.cern.ch/twiki/bin/view/CMS/LumiRecommendationsRun2. 2023.
[126] Alwall, J., Frederix, R., Frixione, S. et al. The automated computation of tree-level and nezt-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP07(2014)079 [arXiv:1405.0301.]
[127] Torbjérn Sjéstrand et al. An Introduction to PYTHIA 8.2. Computer Physics Communications, 191 (2015) 159-177. [arXiv:1410.3012,]
[128] CMS Collaboration. Search for new physics with high-mass tau pairs with 2016 data. Technical Report CMS AN-17-274, CERN, Geneva, 2017.
[129] CMS Collaboration. Performance of the CMS Level-1 trigger in proton-proton. collisions at /s = 13 TeV. JINST 15 (2020) P10017. [arXiv:2006.10165]
[130] CMS Collaboration. CMS luminosity measurement for the 2017 data-taking period at ./s = 13 TeV. CMS PAS LUM-17-004. Geneva (2018)
[131] CMS-LumiPOG. Luminosity Physics Object Group (Lumi POG). https: / /twiki.cern.ch/twiki/bin/view/CMS/TWikiLUM. 2022
[132] CMS-POG Muon. Reference muon momentum scale and __ resolution. https: / /twiki.cern.ch /twiki/bin/view /CMSPublic/MuonReferenceResolution. 2018
[133] Alexis Kalogeropoulos and Johan Alwall. The SysCale code: A tool to derive theoretical systematic uncertainties. [arXiv:1801.08401]
[134] CMS-Higgs PAG. Documentation of the RooStats-based statistics tools for Higgs PAG.https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideHiggsAnalysisCombinedLimit. 2014
[135] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C, 71:1554, 2011. [arXiv:1007.1727]
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 138
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e1cce17d-397f-4001-aca3-584230d88026/download
https://repositorio.uniandes.edu.co/bitstreams/672853fd-5ef5-4fe5-aa80-c2bcb617c13f/download
https://repositorio.uniandes.edu.co/bitstreams/0597002e-aec4-4db8-9ea9-ef80a614993f/download
https://repositorio.uniandes.edu.co/bitstreams/7acabe04-6c2c-49b5-839c-7d97d2d2f805/download
https://repositorio.uniandes.edu.co/bitstreams/bef5d8c6-6138-4335-87be-aaf8a764c8f8/download
https://repositorio.uniandes.edu.co/bitstreams/cc6770da-d514-45a9-bef5-d83268c3ef81/download
https://repositorio.uniandes.edu.co/bitstreams/194aa07e-318f-452e-8e7a-392b7cee01cc/download
https://repositorio.uniandes.edu.co/bitstreams/24eeb4ea-e070-4aa1-81d9-a539054bda34/download
bitstream.checksum.fl_str_mv 085884290c0c08ec3531a30eea1267bc
df4e1092a2505ba2b8e0cc66f2e5e702
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
e4d9e5cfa27ea46ba5caae7ee3a1cc82
a005b96cf5822a279d47b8e55b9c7f9f
3aa77dcfa3c75483c11f1175847a7e8b
9ff26b509f09736040455e574d8230dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133946553532416
spelling Ávila Bernal, Carlos ArturoFraga Flores, Jorge FernandoGómez Moreno, BernardoFrancesco RomeoFacultad de Ciencias::Grupo de Fisica de Altas energias de la Universidad de los Andes2024-01-29T16:55:03Z2024-01-29T16:55:03Z2024-01-24https://hdl.handle.net/1992/7356210.57784/1992/73562instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Beyond standard model (BSM) theories have proposed additional neutral boson particles that could provide insights into the Standard Model's issues \cite{bsm}. For instance, searches have been performed for a neutral gauge boson called $Z'$, a particle with similar properties to the neutral $Z$ massive boson from the SM. There are many ways to generate additional neutral gauge bosons, like extending the SM symmetries or from other frameworks like Grand Unified Theories (GUT), string theories, and extensions of the SM. Finding a $Z'$ boson would have exciting implications because requiring additional gauge $U(1)'$ symmetries would generate an extended Higgs sector and, in the case of supersymmetric models, extended neutralino sectors \cite{zprime}. $Z'$ boson searches are well motivated by those BSM scenarios that predict these particles with masses at the TeV order \cite{cdf,dzero} since these would be produced at the current energies of the Large Hadron Collider (LHC) at CERN \cite{atlas,cms}. In the current $Z'$ boson searches, there is an interest in models that include extra neutral gauge bosons that decay into pairs of high-transverse momentum tau leptons, like for example the sequential standard model (SSM) \cite{ssm}, which predicts a neutral spin-1 boson, denoted $Z'_{SSM}$. Since the tau lepton has different decay modes, the search for $Z'$ bosons involves four possible final state experimental signatures: $\tau_h\tau_h$, $\tau_h\tau_e$, $\tau_h\tau_\mu$ and $\tau_e\tau_\mu$ where $\tau_h$ is a tau lepton that decays hadronically and $\tau_e$ ($\tau_\mu$) is a tau lepton that has an electron (muon) in the final state. In the present graduate thesis, we search for signatures of the production of a $Z'$ boson within the SSM framework in the final state channel $Z'\rightarrow \tau_h\tau_\mu$. We analyze proton-proton collisions at a center of mass energy of $\sqrt{s}=13$ TeV, corresponding to data collected by the CMS experiment during the full LHC-Run 2. The hypothetical experimental signature of a $Z'$ can be obtained, through its tau lepton decays, on events with oppositely charged and almost back-to-back tau pairs with high transverse momentum. Missing transverse energy (MET) is expected in the signal events since neutrinos are produced in the tau decay chain, therefore, we look for a broad enhancement in the reconstructed mass distribution from MET, the tau, and muon leptons. We have performed optimization studies in the topological kinematical selections to maximize the signal significance over backgrounds. We have proposed control regions with orthogonal requirements to the signal region, to verify the MC simulation for backgrounds, and in the case of QCD we have implemented data-driven methods. After unblinding the signal region, no excess above the SM backgrounds has been observed as possible evidence of a $Z'$ boson, therefore, we have expanded the exclusion limits of the $Z'\rightarrow \tau_h\tau_\mu$ channel up to masses of 3150 GeV.Doctor en Ciencias - FísicaDoctorado138application/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Search for $Z'\rightarrow\tau_\mu \tau_h$ in full LHC-run II data with the CMS detectorTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDCMS experimentLHCProton-proton collisionsZ primeBeyond Standard ModelFísica[1] Y. Nagashima. Beyond the Standard Model of Elementary Particle Physics. (Wiley-VCH Verlag GmbH & Co., Weinheim, 2014)[2] P. Langacker. The Physics of Heavy Z Gauge Bosons. Rev. Mod. Phys. 81 (2009), 1199.1228.[arXiv:0801.1345][3] DO Collaboration. Search for a heavy neutral gauge boson in the dielectron channel with 5.4fb-1 of ppbar collisions at ./s = 1.96 TeV. Phys. Lett. B 695 (2011). [arXiv:1008.2023.][4] The CDF Collaboration. Search for High Mass Resonances Decaying to Muon Pairs in /s =1.96 TeV pp Collisions. Phys. Rev. Lett. 106 (2011). [arXiv:1101.4578.][5] The CDF Collaboration. Search for High-Mass e+e- Resonances in pp Collisions at s=1.96 TeV. Phys. Rev. Lett. 102, 059901 (2009). [arXiv:0810.2059.|[6] ATLAS Collaboration, M. Aaboud et al. Search for new high-mass phenomena in the dilepton final state using 36 fo! of proton-proton collision data at \/s = 13 TeV with the ATLAS detector. JHEP 10 (2017), 182. [arXiv:1707.02424.][7] CMS collaboration. Search for narrow resonances in dilepton mass spectra in proton ?proton collisions at ./s = 13 TeV and combination with 8 TeV data. Phys. Lett. B 768 (2017), 57-80.[arXiv:1609.05391][8] G. Altarelli et al. Searching for New Heavy Vector Bosons in p-p Colliders. Z. Phys. C45 (1989), 109. [Erratum: Z. Phys.C47,676(1990)].[9] M. Frank, L. Selbuz, I. Turan. Heavy Z Bosons in the Secluded U(1) Model at Hadron Colliders. Eur. Phys. J. C 81 (2021) 5, 466. [arXiv:2007.00676][10] B. Allanach, J. Butterworth, and T. Corbett. Collider constraints on Z models for neutral current B-anomalies JHEP 08 (2019) 106. [arXiv:1904.10954][11] Giorgio Arcadi, Lorenzo Calibbi, Marco Fedele, Federico Mescia. Muon g-2 and B-anomalies from Dark Matter. Phys. Rev. Lett. 127, 061802 (2021). [arXiv:2104.03228][12] J. L. Hewett et al. Low-Energy Phenomenology of Superstring Inspired E(6) Models. Phys. Rept. 183 (1989), 193.[13] LHCb Collaboration. Measurement of lepton universality parameters in Bt + Kt£*£- and B® + K*°¢+¢- decays. Phys. Rev. D 108, 032002 (2023). [arXiv:2212.09153][14] Ken Hsieh, Kai Schmitz, Jiang-Hao Yu, C.-P. Yuan. Global Analysis of General SU(2) x SU(2) x U(1) Models with Precision Data. Phys. Rev. D82:035011 (2010). [arXiv:1003.3482][15]A. Florez et al. Searching for New Heavy Neutral Gauge Bosons using Vector Boson Fusion Processes at the LHC. Phys. Lett. B 767 (2017) 126-132. [arXiv:1609.09765][16]M. Abdullah et al. Bottom-quark fusion processes at the LHC for probing Z’ models and B- meson decay anomalies. Phys. Rev. D 97 (2018), no. 7, 075035. [arXiv:1707.07016][17]R.S. Chivukula, E.H. Simmons. Electroweak Limits on Non-Universal Z’ Bosons. Phys.Rev.D66:015006,2002. [arXiv:hep-ph0205064][18]CMS Collaboration. Search for high-mass resonances decaying into T-lepton pairs in pp collisions at ,/s = 7 TeV. Phys. Lett. B716 (2012), 82-102. [arXiv:1206.1725.][19]ATLAS Collaboration. A search for high-mass resonances decaying to T+r~ in pp collisions at ./s =8 TeV with the ATLAS detector. JHEPO7 (2015) 157. [arXiv:1502.07177.][20]CMS Collaboration. Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at \/s = 13 TeV. JHEP 02 (2017), 048. [arXiv:1611.06594.][21]ATLAS Collaboration. Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fo— of pp collisions at »/s = 13 TeV with the ATLAS detector. JHEP01 (2018), 055. [arXiv:1709.07242.][22]CMS Collaboration. Search for Heavy Neutral Resonances Decaying to Tau Lepton Pairs at CMS. Technical Report CMS AN-20-134, CERN, Geneva, 2022.[23]Paul Langacker. The Standard Model and Beyond. (Taylor & Francis, Boca Raton, 2009)[24]Brenda Fabela. Search for Compressed Supersymmetry in Electroweak Vector Boson Fusion Topologies with 0-, 1-, and 2- Low Energy Lepton Final States in Proton-Proton Collisions at /s = 13 TeV PhD Thesis. Vanderbilt University (2022).[25]John Campbell, Joey Huston and Frank Krauss. The Black Book of Quantum Chromodynamics: A Primer for the LHC Era. (Oxford University Press, Oxford, 2018)[26]R.L. Workman et al. (Particle Data Group). Z’ -Boson Searches. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).[27]Yuval Grossman and Yossi Nir. The Standard Model: From Fundamental Symmetries to Experimental Tests. (Princeton University Press, 2023)[28]G. Senjanovic et al. Exact Lefi-Right Symmetry and Spontaneous Violation of Parity. Phys.Rev. D12 (1975), 1502. [arXiv:0905.3220][29]C. T. Hill et al. Strong dynamics and electroweak symmetry breaking. Phys. Rept. 381 (2003),235-402. Erratum: Phys. Rept.390,553(2004). [arXiv:hep-ph/0203079][30]R. Diener et al. Unravelling an Extra Neutral Gauge Boson at the LHC using Third Generation Fermions. Phys. Rev. D83 (2011), 115008. [arXiv:1006.2845.][31]C. T. Hill. Topcolor assisted technicolor. Phys. Lett. B345:483-489, 1995. [arXiv:hep-ph/9411426.][32]T. Han et. al. Phenomenology of the little Higgs model. Phys. Rev. D67 (2003), 095004.[arXiv:hep-ph/0301040.][33]Mark Thomson. Modern Particle Physics. (Cambridge University Press, Cambridge, 2013)[34]The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group. A Combination of preliminary electroweak measurements and constraints on the standard model. CERN-PH-EP/2005-051.[arXiv:hep-ex/0511027.][35]CMS Collaboration. Search for high-mass resonances in dilepton final states in proton-proton collisions at ,/s = 13 TeV. JHEP 06 (2018), 120. [arXiv:1803.06292.][36]ATLAS Collaboration. Search for high-mass dilepton resonances using 139 fo! of pp collision data collected at ./s = 13 TeV with the ATLAS detector. Phys. Lett. B 796 (2019) 68.[arXiv:1903.06248.][37]ATLAS Collaboration. Search for high-mass dilepton resonances using 139 fo- of pp collision data collected at ,/s = 13 TeV with the ATLAS detector. Phys. Lett. B 796 (2019) 68.[arXiv:1903.06248.][38]CMS Collaboration. Search for high-mass resonances and large extra dimensions with tau-lepton pairs decaying into final states with an electron and a muon at \/s = 8 TeV. Tech. Rep.CMS-PAS-EXO-12-046. CERN, Geneva (2015).[39]Felipe Gonzales. Search for Z’ bosons decaying into tau pairs in pp collisions at /s =13 TeV with the CMS detector. Ph.D. Thesis. CERN-THESIS-2018-139. Universidad de los Andes.(Bogota, 2018)[40]Maurizio Vretenar (Ed.) High-Luminosity Large Hadron Collider (HL-LHC). CERN Yellow Reports: Monographs. CERN-2020-010. (CERN, Geneva, 2020)[41]CERN. [SOLDE—ISOLDE. https://isolde.cern/ (2023)[42]CERN. CERN-MEDICIS WEBSITE. https://medicis.cern/ (2023)[43]M.A. Fraser, et al. Status of the HIE-ISOLDE project at CERN. [arXiv:1707.05129][44]J. Lerendegui-Marco, A. Casanovas, V. Alcayne, the n_-TOF Collaboration. New perspectives for neutron capture measurements in the upgraded CERN-n_TOF Facility. [arXiv:2303.08724][45]Jasper Kirkby. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber. [arXiv:physics/0104041 [physics.ao-ph][46]CERN. PS-IRRAD Proton Facility. https: //ps-irrad.web.cern.ch (2023) CERN.[47] CERN High energy AcceleRator Mized field. https://charm.web.cern.ch/ (2023)[48]Boris Grube (for the COMPASS collaboration). Recent Results on Spectroscopy from COMPASS. [arXiv:1512.03599 [hep-ex][49]Haradhan Adhikary (for the NA61/SHINE Collaboration). Search for the QCD critical point by NA61/SHINE at the CERN SPS. [arXiv:2308.04254 |nucl-ex]][50]E. Gschwendtner, et. al. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. [arXiv:1512.05498 [physics.acc-phl]][51]CERN. The HiRadMat Facility at SPS. https://hiradmat.web.cern.ch/ (2023)[52]ALICE Collaboration. The ALICE experiment — A journey through QCD. CERN-EP-2022-227. [arXiv:2211.04384][53]ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider: A Description of the Detector Configuration for Run 8. CERN-EP-2022-259. [arXiv:2305.16623][54]Belyaev, I., Carboni, G., Harnew, N. et al. The history of LHCb. EPJ H 46, 3 (2021).[arXiv:2101.05331][55]E. Gschwendtner, et. al. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. [arXiv:1512.05498 [physics.acc-ph]|[56]Eugenio Berti (for the LHCf collaboration). The LHCf experiment: present status and physics results. [arXiv:1710.03991 [hep-ex][57]Mariana Frank, et. al. Searching for Heavy Neutrinos with the MoEDAL-MAPP Detector at the LHC. [arXiv:1909.05216 [hep-ph][58]Brian Petersen (for the FASER Collaboration). First Physics Results from the FASER Experiment. [arXiv:2305.08665 [hep-ex]][59]Ettore Zaffaroni (for the SND@LHC collaboration). Results from SND@LHC. [arXiv:2310.15791 [hep-ex][60]CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716 (2012) 30. [arXiv:1207.7235.][61]ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett. B716 (2012) 1-29. [arXiv:1207.7214,][62]Christiane Lefevre. The CERN accelerator compler. CERN Document Server. http://cds.cern.ch/record/1260465. 2008[63]ATLAS Collaboration Precision luminosity measurement in proton-proton collisions at /s = 13 TeV in 2015 and 2016 at CMSC. Eur. Phys. J. C 81 (2021) 800. [arXiv:2104.01927][64]J. T. Boyd. LHC Run-2 and Future Prospects. arXiv:2001.04370 [hep-ex] (2020)[65]CMS Collaboration. The CMS experiment at the CERN LHC. JINST 3 (2008) S08004.[66]CMS Collaboration. CMS Physics: Technical Design Report Volume 1: Detector Performance and Software. Technical Design Report CERN-LHCC-2006-001, CMS-TDR-8-1, CERN-LHCC-2006-001, CMS-TDR-8-1. CERN, Geneva (2006).[67]CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003. [arXiv:1706.04965][68] Thomas Lenzi. Development and Study of Different Muon Track Reconstruction Algorithms for the Level-1 Trigger for the CMS Muon Upgrade with GEM Detectors. PhD Thesis. Université Libre de Bruxelles (2013).[69] CMS Collaboration. Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays. JINST 5:T03021,2010. [arXiv:0910.5530.][70] CMS Collaboration. Precision measurement of the structure of the CMS inner tracking system using nuclear interactions. JINST 13 (2018) P10034. [arXiv:1807.03289.][71] K. W. Bell et al. Vacuum phototriodes for the CMS electromagnetic calorimeter endcap. IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2284-2287. (2004)[72] CMS Collaboration. Performance and Operation of the CMS Electromagnetic Calorimeter. JINST 5:T03010,2010. [arXiv:0910.3423.|[73] CMS Collaboration. Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data. CMS-PRF-22-001, CERN-EP-2023-093.[arXiv:2306.10355.][74] CMS Collaboration. Performance of CMS muon reconstruction in pp collision events at ./s = 7. JINST 7 (2012) P10002. [arXiv:1206.4071.][75] Contardo, Didier; Ball, Austin. The Phase-2 Upgrade of the CMS Muon Detectors. CERN-LHCC-2017-012 ; CMS-TDR-016.[76] Joshi, Bhargav Madhusudan. Projected performance of CMS Cathode Strip Chambers at HL-LHC. PoS LHCP2018 (2018) 074.[77] Shivali Malhotra. GEM Detectors for the Upgrade of the CMS Muon Spectrometer. J. Phys.: Conf. Ser. 2374 012154 (2022).[78] CMS Collaboration. CMS RPC background — studies and measurements. JINST 16 C04005. [arXiv:2005.12769.][79] J. Brooke (on behalf of the CMS Collaboration). Performance of the CMS Level-1 Trigger. [arXiv:1302.2469.][80] Jeitler, Manfred. Upgrade of the trigger system of CMS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 718, 2018, Pages 11-15.[81] Alejandro Segura. Search for compressed supersymmetry at the LHC in final states with one hadronic tau and one energetic jet. Ph.D. Thesis. CERN-THESIS-2020-193. Universidad de los Andes. (Bogota, 2019)[82] Rende Steerenberg, LHC Report: Back in production, (11 July, 2018) https: / /home.cern/news/news/accelerators/lhc-report-final-days-run-2[83] Xiaocong Ai, Georgiana Mania, Heather M. Gray, Michael Kuhn, Nicholas Styles. A GPU-based Kalman Filter for Track Fitting. Comput Softw Big Sci 5, 20 (2021). [arXiv:2105.01796.][84] CMS Collaboration. Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at ./s = 8 TeV. JINST 10 (2015) PO6005. [arXiv:1502.02701][85] CMS Collaboration, CMS Physics Technical Design Report Volume I: Detector Performance and Software. Technical Design Report. CMS-TDR-008-1 (2006)[86] CMS Collaboration. Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC. JINST 16 (2021) P05014. [arXiv:2012.06888][87] CMS-EgammaPOG. HEEP Electron ID and isolation. https://twiki.cern.ch/twiki/bin/view/CMS/HEEPElectronIdentificationRun2. 2021[88] Wenxing Fang. Search for new physics in dilepton final states at the CMS experiment. PhD Thesis. Université libre de Bruxelles (2019).[89] CMS-MuonPOG. Baseline muon selections for Run-I. MuonWikiHome (2021)[90] CMS Collaboration. Performance of tau-lepton reconstruction and identification in CMS. JINST 7 (2012) P01001. [arXiv:1109.6034.][91] K. A. Olive et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C38 (2014).[92] CMS Collaboration. Identification of hadronic tau lepton decays using a deep neural network. CMS-TAU-20-001. [arXiv:2201.08458.][93] Sebastien Brommer Janek Bechtel. Tau leptons. Talk presented at the 2019 CMS Physics Object School. Last accessed: 12/02/2022. URL https://indico.cern.ch/event /797855/[94] CMS Collaboration. Performance of reconstruction and identification of t leptons decaying to hadrons and v, in pp collisions at ,/s = 13 TeV. JINST 13 (2018) P10005. [arXiv:1809.02816.][95] CMS-TauPOG. Tau ID recommendations for Run-2: 2016, 2017, and 2018. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/TauIDRecommendationForRun2. 2022[96] Savanna Starko. Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft Tau Lepton, a Highly Energetic Jet, and Large Missing Transverse Momentum in Proton-Proton Collisions at 13 TeV. Ph.D. Thesis. Vanderbilt University (2020).[97| CMS Collaboration. Search for a heavy neutral gauge boson using Vector Boson Fusion processes. Technical Report CMS AN-18-200, CERN, Geneva, 2022.[98] R. Atkin. Review of jet reconstruction algorithms. J. Phys. Conf. Ser. 645 (2015)(1), 012008.[99] Matteo Cacciari, Gavin P. Salam, Gregory Soyez The anti-k;, jet clustering algorithm J. High Energy Phys. JHEP04(2008) [arXiv:0802.1189][100] CMS-JES. Introduction to Jet Energy Corrections at CMS. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/IntroToJEC. 2016.[101] CMS Collaboration. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 [arXiv:1607.03663 [hep-ex][102] CMS Collaboration. Jet energy scale and resolution performance with 138 TeV data collected by CMS in 2016-2018. CERN-CMS-DP-2020-019. (2020)[103] CMS Collaboration. Jet algorithms performance in 18 TeV data. CMS-PAS-JME-16-003. Geneva, (2017)[104] Izaak Neutelings. Impact parameters of B hadron decay. Graphics with TikZ in LaTeX. (2021)[105] S. Chatrchyan et al. (CMS). Identification of b-quark jets with the CMS experiment. JINST 8 (2013), P04013. arXiv:1211.4462.[106] CMS Collaboration. Performance of b-jet identification in CMS. CMS PAS BTV-11-001. Geneva, (2011)[107] C. Weiser. A Combined Secondary Verter Based B-Tagging Algorithm in CMS. CMS-NOTE-2006-014. Geneva, (2006)[108] CMS Collaboration. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 [arXiv:1712.07158][109] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, [arXiv:1603.04467][110] Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. [arXiv:1502.01852|[111] CMS-BtagPOG. Recommendation for Using b-tag Objects in Physics Analyses. https: / /twiki.cern.ch/twiki/bin/view/CMS/BtagRecommendation. 2022[112] CMS-BtagPOG. Methods to apply b-tagging efficiency scale _—_ factors. https: / /twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods. 2022[113] CMS Collaboration. Missing transverse energy performance of the CMS detector JINST 6 (2011) 09001 [arXiv:1106.5048][114] Abdellah Tnourji, Emilien Chapon, David D’enterria. Missing Transverse energy in PbPb collision in LHC with CMS detector. CERN Document Server, CERN, In press. jhal-02051404;[115] CMS Collaboration. Performance of missing transverse momentum reconstruction in proton-proton collisions at ./s = 13 TeV using the CMS detector. JINST 14(07) P07004 [arXiv:1903.06078][116] CMS-JetMET. MET Filter Recommendations for Run I. https: / /twiki.cern.ch/twiki/bin/view/CMS/MissingET OptionalFiltersRun2. 2022[117] Kevin Stenson . Reconstructing a multitude of particle tracks within CMS. (2012) http://cms.web.cern.ch/news/ Web. April 23, 2017.[118] CMS-PVTMain. Utilities for Accessing Pileup Information for Data. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/PileupJSONFileforData. 2022.[119] CMS Collaboration. Pileup mitigation at CMS in 13 TeV data. JINST 15 (2020) P09018.[arXiv:2003.00503][120] CMS Collaboration. Pileup mitigation at CMS in 13 TeV data. JINST 15 (2020) P09018.[arXiv:2003.00503][121] Matteo Cacciari, Gavin P. Salam. Pileup subtraction using jet areas. Phys.Lett.B659:119-126,2008. [arXiv:0707.1378][122] CMS-JME group. Reweighing recipe to emulate Level 1 ECAL pre-firing. https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/LIECALPrefiringWeightRecipe. 2022[123] L. Thomas, J. Damgov. EE noise mitigation in 2017 (2017 MET recipe v2). https: / /indico.cern.ch/event/759372/contributions/3149378 /attachments/ 1721436 /2802416/metreport.pdf. 2022.[124] CMS Collaboration. Search for disappearing tracks in proton-proton collisions at /s = 13 TeV. Phys. Lett. B 806 (2020) 135502. [arXiv:2004.05153.][125] CMS Collaboration. Lumi Recomendations for Run 2. https: //twiki.cern.ch/twiki/bin/view/CMS/LumiRecommendationsRun2. 2023.[126] Alwall, J., Frederix, R., Frixione, S. et al. The automated computation of tree-level and nezt-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP07(2014)079 [arXiv:1405.0301.][127] Torbjérn Sjéstrand et al. An Introduction to PYTHIA 8.2. Computer Physics Communications, 191 (2015) 159-177. [arXiv:1410.3012,][128] CMS Collaboration. Search for new physics with high-mass tau pairs with 2016 data. Technical Report CMS AN-17-274, CERN, Geneva, 2017.[129] CMS Collaboration. Performance of the CMS Level-1 trigger in proton-proton. collisions at /s = 13 TeV. JINST 15 (2020) P10017. [arXiv:2006.10165][130] CMS Collaboration. CMS luminosity measurement for the 2017 data-taking period at ./s = 13 TeV. CMS PAS LUM-17-004. Geneva (2018)[131] CMS-LumiPOG. Luminosity Physics Object Group (Lumi POG). https: / /twiki.cern.ch/twiki/bin/view/CMS/TWikiLUM. 2022[132] CMS-POG Muon. Reference muon momentum scale and __ resolution. https: / /twiki.cern.ch /twiki/bin/view /CMSPublic/MuonReferenceResolution. 2018[133] Alexis Kalogeropoulos and Johan Alwall. The SysCale code: A tool to derive theoretical systematic uncertainties. [arXiv:1801.08401][134] CMS-Higgs PAG. Documentation of the RooStats-based statistics tools for Higgs PAG.https: / /twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideHiggsAnalysisCombinedLimit. 2014[135] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C, 71:1554, 2011. [arXiv:1007.1727]201527724PublicationORIGINALSearch for Z.pdfSearch for Z.pdfapplication/pdf14789966https://repositorio.uniandes.edu.co/bitstreams/e1cce17d-397f-4001-aca3-584230d88026/download085884290c0c08ec3531a30eea1267bcMD54autorizacion tesis_Jorge_Fraga.pdfautorizacion tesis_Jorge_Fraga.pdfHIDEapplication/pdf309882https://repositorio.uniandes.edu.co/bitstreams/672853fd-5ef5-4fe5-aa80-c2bcb617c13f/downloaddf4e1092a2505ba2b8e0cc66f2e5e702MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0597002e-aec4-4db8-9ea9-ef80a614993f/downloadae9e573a68e7f92501b6913cc846c39fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/7acabe04-6c2c-49b5-839c-7d97d2d2f805/download4460e5956bc1d1639be9ae6146a50347MD53TEXTSearch for Z.pdf.txtSearch for Z.pdf.txtExtracted texttext/plain102001https://repositorio.uniandes.edu.co/bitstreams/bef5d8c6-6138-4335-87be-aaf8a764c8f8/downloade4d9e5cfa27ea46ba5caae7ee3a1cc82MD56autorizacion tesis_Jorge_Fraga.pdf.txtautorizacion tesis_Jorge_Fraga.pdf.txtExtracted texttext/plain2039https://repositorio.uniandes.edu.co/bitstreams/cc6770da-d514-45a9-bef5-d83268c3ef81/downloada005b96cf5822a279d47b8e55b9c7f9fMD58THUMBNAILSearch for Z.pdf.jpgSearch for Z.pdf.jpgGenerated Thumbnailimage/jpeg6635https://repositorio.uniandes.edu.co/bitstreams/194aa07e-318f-452e-8e7a-392b7cee01cc/download3aa77dcfa3c75483c11f1175847a7e8bMD57autorizacion tesis_Jorge_Fraga.pdf.jpgautorizacion tesis_Jorge_Fraga.pdf.jpgGenerated Thumbnailimage/jpeg11054https://repositorio.uniandes.edu.co/bitstreams/24eeb4ea-e070-4aa1-81d9-a539054bda34/download9ff26b509f09736040455e574d8230ddMD591992/73562oai:repositorio.uniandes.edu.co:1992/735622024-08-26 15:23:54.881http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K