Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)

Weakly electric fish navigate and communicate by using Electric Organ Discharges (EODs). EOD emission depends on internal and external factors and is used to study the biology of these organisms. Recent studies have evaluated distribution and territoriality in some Apteronotus species, but more stud...

Full description

Autores:
Osorio Ospina, Juan Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69261
Acceso en línea:
http://hdl.handle.net/1992/69261
Palabra clave:
Territoriality
Ecology
Electric organ discharges (EODs)
Weakly electric fish
Q10
Biología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_54e1e77a41a546b7d469e7b9e5cb5ef3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69261
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
title Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
spellingShingle Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
Territoriality
Ecology
Electric organ discharges (EODs)
Weakly electric fish
Q10
Biología
title_short Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
title_full Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
title_fullStr Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
title_full_unstemmed Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
title_sort Spatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)
dc.creator.fl_str_mv Osorio Ospina, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Molina Escobar, Jorge Alberto
dc.contributor.author.none.fl_str_mv Osorio Ospina, Juan Camilo
dc.subject.keyword.none.fl_str_mv Territoriality
Ecology
Electric organ discharges (EODs)
Weakly electric fish
Q10
topic Territoriality
Ecology
Electric organ discharges (EODs)
Weakly electric fish
Q10
Biología
dc.subject.themes.es_CO.fl_str_mv Biología
description Weakly electric fish navigate and communicate by using Electric Organ Discharges (EODs). EOD emission depends on internal and external factors and is used to study the biology of these organisms. Recent studies have evaluated distribution and territoriality in some Apteronotus species, but more studies are needed to better comprehend their ecology and behavior under natural conditions. Keeping this in mind, we used fish-finder amplifiers and a GPS to locate, sex and geoposition resting places of Apteronotus galvisi individuals in a 96-m section of a stream located in San Martin (Meta) from September to November 2022. We also made 24-hour EOD recordings ensuring this tracking method accurately identifies fish regardless of water temperature. We found an average of 49 individuals in the sampled area, with a proportion of mature males:females/immature of ~1:6. In the sampled section of the stream, we found a clustered distribution of fish in their resting places, and a majority of males retained their resting places during the sampled months. The effect of water temperature on EOD frequency of A. galvisi was established by calculating the temperature coefficients (Q10) under natural conditions. We were unable to track females/immature individuals due to the overlapping in EOD frequency ranges in clustered areas of the stream. In conclusion, through non-continuous surveys of A. galvisi in their natural habitat we found a skewed sex ratio, a clustered pattern of spatial distribution of their resting places, and males with fixed territories.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-04T22:09:11Z
dc.date.available.none.fl_str_mv 2023-08-04T22:09:11Z
dc.date.issued.none.fl_str_mv 2023-08-03
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69261
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69261
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Albert, J. S. (2003) Gymnotiformes: Apteronotidae - ghost knifefishes. In: Reis, R. E., Kullander, S. O. & Ferraris, C. J. (Ed.), Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre, Brazil.
Clark, P. J. & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445-453. https://doi.org/10.2307/1931034
Crampton, W. G. R. (2019). Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 95(1), 92-134. https://doi.org/10.1111/jfb.13922
De Santana, C. D., Maldonado-Ocampo, J. A. & Crampton, W. G. R. (2007). Apteronotus galvisi, A new species of electric ghost knifefish from the Rio Meta basin, Colombia (Gymnotiformes: Apteronotidae). Ichthyological Exploration of Freshwaters, 18(2). https://stars.library.ucf.edu/scopus2000/6780
De Santana, C. D. & Vari, R. P. (2013). Brown ghost electric fishes of the Apteronotus leptorhynchus species-group (Ostariophysi, Gymnotiformes); monophyly, major clades, and revision. Zoological Journal of the Linnean Society, 168(3), 564-596. https://doi.org/10.1111/zoj.12022
De Santana, C. D. & Maldonado-Ocampo, J. A. (2004). Redescription of Apteronotus mariae (Eigenmann & Fisher, 1914) and the taxonomic status of Apteronotus jurubidae (Fowler, 1944) (Gymnotiformes: Apteronotidae). Zootaxa, 632, 1-14. https://doi.org/10.11646/zootaxa.632.1.1
DoNascimiento, C., Herrera-Collazos, E. E., Herrera-R., G. A., Ortega-Lara, A., Villa-Navarro, F. A., Usma Oviedo, J. S. & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: A Darwin Core alternative to the updating problem. Zookeys, 708, 25-138. https://doi.org/10.3897/zookeys.708.13897
Dunlap, K. D. Smith, G. T., & Yekta, A. (2000). Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish, Apteronotus leptorhynchus. Brain, Behavior and Evolution, 55(3), 152-162. https://doi.org/10.1159/000006649
Dunlap, K. D. & Oliveri, L. (2002). Retreat site selection and social organization in captive electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 188(6), 469-477. https://doi.org/10.1007/s00359-002-0319-5
Engler, G. & Zupanc, G. (2001). Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 187(9), 747-756. https://doi.org/10.1007/s00359-001-0248-8
Escamilla-Pinilla, C., Mojica, J. I. & Molina, J. (2019). Spatial and temporal distribution of Gymnorhamphichthys rondoni (Gymnotiformes: Rhamphichthyidae) in a long-term study of an Amazonian terra firme stream, Leticia - Colombia. Neotropical Ichthyology, 17(3). https://doi.org/10.1590/1982-0224-20190006
Fernandes, C. C., Lundberg, J. G. & Riginos, C. (2002). Largest of all electric-fish snouts: Hypermorphic facial growth in male Apteronotus hasemani and the identity of Apteronotus anas (Gymnotiformes: Apteronotidae). Copeia, 2002(1), 52-61. https://doi.org/10.1643/0045- 8511(2002)002[0052:LOAEFS]2.0.CO;2
Fugère, V., & Krahe, R. (2010). Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. Journal of Experimental Biology, 213(2), 225-236.
Fugère, V., Ortega, H., Krahe, R. (2011). Electrical signalling of dominance in a wild population of electric fish. Biology Letters, 7(2), 197-200.
Gogarten, J. (2008). The life of Apteronotus rostratus, a panamanian species of weakly electric fish: A field study. McGill University. 39 p. https://www.mcgill.ca/pfss/files/pfss/Gogarten.pdf
Hagedorn, M. (1988). Ecology and behavior of a pulse-type electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a Fresh-Water Stream in Panama. Copeia, 1988(2), 324-335. https://doi.org/10.2307/1445872
Hennen, M. J. & Brown, M. L. (2014). Movement and spatial distribution of common carp in a South Dakota glacial lake system: Implications for management and removal. North American Journal of Fisheries Management, 34(6), 1270-1281. https://doi.org/10.1080/02755947.2014.959674
Henninger, J., Krahe, R., Sinz, F. & Benda, J. (2020). Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging. Journal of Experimental Biology, 223(3), jeb206342. https://doi.org/10.1242/jeb.206342
Ilies, I., Traniello, I. M., Sîrbulescu, R. F. & Zupanc, G. K. H. (2014). Determination of relative age using growth increments of scales as a minimally invasive method in the tropical freshwater Apteronotus leptorhynchus. Journal of Fish Biology, 84(5), 1312-1325. https://doi.org/10.1111/jfb.12354
John, L. (2012). Electrocommunication in weakly electric fish: Signal echoing and aggression. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/conf.fnbeh.2012.27.00428
Kramer, B. (1990). Electrocommunication in teleost fishes (Vol. 29). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-84026-5
Larranaga, N. & Steingrímsson, S. Ó. (2015). Shelter availability alters diel activity and space use in a stream fish. Behavioral Ecology, 26(2), 578-586. https://doi.org/10.1093/beheco/aru234
Maldonado-Ocampo, J. A. & Albert, J. S. (2003). Species diversity of gymnotiform fishes (Gymnotiformes, Teleostei) in Colombia. Biota Colombiana, 4(2), Article 2. http://revistas.humboldt.org.co/index.php/biota/article/view/130
Miranda, M., Silva, A. C. & Stoddard, P. K. (2008). Use of space as an indicator of social behavior and breeding systems in the gymnotiform electric fish Brachyhypopomus pinnicaudatus. Environmental Biology of Fishes, 83(4), 379-389. https://doi.org/10.1007/s10641-008-9358-2
Moller, P. (1995). Electric fishes: History and behavior (1st ed., Vol. 17). Springer Dordrecht. https://link.springer.com/book/9780412373800
Mucha, S., Chapman, L. J. & Krahe, R. (2021). The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia. Journal of Comparative Physiology A, 207(3), 369-379. https://doi.org/10.1007/s00359-021-01470-w
Raab, T. (2022). Social structures and interactions in electric fish explored by large-scale signal tracking [Dissertation, Universität Tübingen]. https://doi.org/10.15496/publikation-67594
Raab, T., Linhart, L., Wurm, A. & Benda, J. (2019). Dominance in habitat preference and diurnal explorative behavior of the weakly wlectric fish Apteronotus leptorhynchus. Frontiers in Integrative Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnint.2019.00021
Raab, T., Bayezit, S., Erdle, S. & Benda, J. (2021a). Electric fish use electrocommunication signals to fine tune relative dominance and access to resources (p. 2021.02.04.429572). bioRxiv. https://doi.org/10.1101/2021.02.04.429572
Raab, T., Bayezit, S., Erdle, S. & Benda, J. (2021b). Electrocommunication signals indicate motivation to compete during dyadic interactions of an electric fish. Journal of Experimental Biology, 224(19), jeb242905. https://doi.org/10.1242/jeb.242905
Raab, T., Madhav, M. S., Jayakumar, R. P., Henninger, J., Cowan, N. J. & Benda, J. (2022). Advances in non-invasive tracking of wave-type electric fish in natural and laboratory settings. Frontiers in Integrative Neuroscience, 16. https://www.frontiersin.org/articles/10.3389/fnint.2022.965211
Rasnow, B. & Bower, J. M. (1996). The electric organ discharges of the gymnotiform fishes: I. Apteronotus leptorhynchus. Journal of Comparative Physiology A, 178(3), 383-396. https://doi.org/10.1007/BF00193976
Rudiger, K. (2012). Undisturbed long-term monitoring of weakly electric fish in a small stream in Panama. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/conf.fnbeh.2012.27.00319
Sánchez Núñez, D. A., Pinilla, G. A. & Mancera Pineda, J. E. (2015). Efectos del uso del suelo en las propiedades edáficas y la escorrentía superficial en una cuenca de la Orinoquía colombiana. Colombia Forestal, 18(2), 255-272. https://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a06
Serrano-Fernández, P. (2003). Gradual frequency rises in interacting black ghost knifefish, Apteronotus albifrons. Journal of Comparative Physiology A, 189(9), 685-692. https://doi.org/10.1007/s00359- 003-0445-8
Tallarovic, S. & Zakon, H. (2002). Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 188(8), 649-657. https://doi.org/10.1007/s00359-002-0344-4
Triefenbach, F. A. & Zakon, H. H. (2008). Changes in signaling during agonistic interactions between male weakly electric knifefish, Apteronotus leptorhynchus. Animal Behaviour, 75(4), 1263-1272. https://doi.org/10.1016/j.anbehav.2007.09.027
Yañez-Dukon, L. A., Vargas Hernández, N. F., Forero Espinosa, I., Locano Montoya, P. & Ruiz- Toquica, J. S. (2021). Evaluación rápida de las familias y grupos trófico de aves asociadas a sabanas y bosques de galería en la Reserva El Caduceo, La María (San Martín, Meta, Colombia). Expeditio Repositorio Institucional UJTL. https://doi.org/10/21579
Zubizarreta, L., Quintana, L., Hernández, D., Mello, F. T. de, Meerhoff, M., Honji, R. M., Moreira, R. G. & Silva, A. (2020). Seasonal and social factors associated with spacing in a wild territorial electric fish. PLoS ONE, 15(6), e0228976. https://doi.org/10.1371/journal.pone.0228976
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Biología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c4073748-3cd3-42a9-bf60-113ebe70488a/download
https://repositorio.uniandes.edu.co/bitstreams/a534ce50-58b2-4a67-a30e-cbe3544cf8a2/download
https://repositorio.uniandes.edu.co/bitstreams/30897f46-0f48-461d-a3cc-bfbca40b011f/download
https://repositorio.uniandes.edu.co/bitstreams/73fecc4b-cee2-4893-8fc5-2441f5b96dab/download
https://repositorio.uniandes.edu.co/bitstreams/aeac9a92-6ca7-4ac1-a0ef-13be5a67768e/download
https://repositorio.uniandes.edu.co/bitstreams/2dd9b709-f381-4273-9a41-789def2375f9/download
https://repositorio.uniandes.edu.co/bitstreams/6f08f4d5-9aaf-4c2f-9dc0-153e4a95304e/download
https://repositorio.uniandes.edu.co/bitstreams/51842c77-adaa-47f6-ba79-9114fbf790e1/download
bitstream.checksum.fl_str_mv 01024fad33495e199fac135606600ea6
e82ea2c53738253a75b9b210ff6ba973
cbc47e9c6276825d85d01e9b2a8e58a2
ec94d41c2146cbe26f891bafb1d282aa
9ea51ab8302e847fad8936f804a9dc42
a88eb29ed670392e7034534a9db694e0
4460e5956bc1d1639be9ae6146a50347
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390278159007744
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Escobar, Jorge Albertovirtual::6666-1Osorio Ospina, Juan Camilode832012-d004-406b-b32c-92050c80a1676002023-08-04T22:09:11Z2023-08-04T22:09:11Z2023-08-03http://hdl.handle.net/1992/69261instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Weakly electric fish navigate and communicate by using Electric Organ Discharges (EODs). EOD emission depends on internal and external factors and is used to study the biology of these organisms. Recent studies have evaluated distribution and territoriality in some Apteronotus species, but more studies are needed to better comprehend their ecology and behavior under natural conditions. Keeping this in mind, we used fish-finder amplifiers and a GPS to locate, sex and geoposition resting places of Apteronotus galvisi individuals in a 96-m section of a stream located in San Martin (Meta) from September to November 2022. We also made 24-hour EOD recordings ensuring this tracking method accurately identifies fish regardless of water temperature. We found an average of 49 individuals in the sampled area, with a proportion of mature males:females/immature of ~1:6. In the sampled section of the stream, we found a clustered distribution of fish in their resting places, and a majority of males retained their resting places during the sampled months. The effect of water temperature on EOD frequency of A. galvisi was established by calculating the temperature coefficients (Q10) under natural conditions. We were unable to track females/immature individuals due to the overlapping in EOD frequency ranges in clustered areas of the stream. In conclusion, through non-continuous surveys of A. galvisi in their natural habitat we found a skewed sex ratio, a clustered pattern of spatial distribution of their resting places, and males with fixed territories.BiólogoPregradoapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae: Gymnotiformes) individuals in a stream in the Orinoquia region (Meta: Colombia)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPTerritorialityEcologyElectric organ discharges (EODs)Weakly electric fishQ10BiologíaAlbert, J. S. (2003) Gymnotiformes: Apteronotidae - ghost knifefishes. In: Reis, R. E., Kullander, S. O. & Ferraris, C. J. (Ed.), Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre, Brazil.Clark, P. J. & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445-453. https://doi.org/10.2307/1931034Crampton, W. G. R. (2019). Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 95(1), 92-134. https://doi.org/10.1111/jfb.13922De Santana, C. D., Maldonado-Ocampo, J. A. & Crampton, W. G. R. (2007). Apteronotus galvisi, A new species of electric ghost knifefish from the Rio Meta basin, Colombia (Gymnotiformes: Apteronotidae). Ichthyological Exploration of Freshwaters, 18(2). https://stars.library.ucf.edu/scopus2000/6780De Santana, C. D. & Vari, R. P. (2013). Brown ghost electric fishes of the Apteronotus leptorhynchus species-group (Ostariophysi, Gymnotiformes); monophyly, major clades, and revision. Zoological Journal of the Linnean Society, 168(3), 564-596. https://doi.org/10.1111/zoj.12022De Santana, C. D. & Maldonado-Ocampo, J. A. (2004). Redescription of Apteronotus mariae (Eigenmann & Fisher, 1914) and the taxonomic status of Apteronotus jurubidae (Fowler, 1944) (Gymnotiformes: Apteronotidae). Zootaxa, 632, 1-14. https://doi.org/10.11646/zootaxa.632.1.1DoNascimiento, C., Herrera-Collazos, E. E., Herrera-R., G. A., Ortega-Lara, A., Villa-Navarro, F. A., Usma Oviedo, J. S. & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: A Darwin Core alternative to the updating problem. Zookeys, 708, 25-138. https://doi.org/10.3897/zookeys.708.13897Dunlap, K. D. Smith, G. T., & Yekta, A. (2000). Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish, Apteronotus leptorhynchus. Brain, Behavior and Evolution, 55(3), 152-162. https://doi.org/10.1159/000006649Dunlap, K. D. & Oliveri, L. (2002). Retreat site selection and social organization in captive electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 188(6), 469-477. https://doi.org/10.1007/s00359-002-0319-5Engler, G. & Zupanc, G. (2001). Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 187(9), 747-756. https://doi.org/10.1007/s00359-001-0248-8Escamilla-Pinilla, C., Mojica, J. I. & Molina, J. (2019). Spatial and temporal distribution of Gymnorhamphichthys rondoni (Gymnotiformes: Rhamphichthyidae) in a long-term study of an Amazonian terra firme stream, Leticia - Colombia. Neotropical Ichthyology, 17(3). https://doi.org/10.1590/1982-0224-20190006Fernandes, C. C., Lundberg, J. G. & Riginos, C. (2002). Largest of all electric-fish snouts: Hypermorphic facial growth in male Apteronotus hasemani and the identity of Apteronotus anas (Gymnotiformes: Apteronotidae). Copeia, 2002(1), 52-61. https://doi.org/10.1643/0045- 8511(2002)002[0052:LOAEFS]2.0.CO;2Fugère, V., & Krahe, R. (2010). Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. Journal of Experimental Biology, 213(2), 225-236.Fugère, V., Ortega, H., Krahe, R. (2011). Electrical signalling of dominance in a wild population of electric fish. Biology Letters, 7(2), 197-200.Gogarten, J. (2008). The life of Apteronotus rostratus, a panamanian species of weakly electric fish: A field study. McGill University. 39 p. https://www.mcgill.ca/pfss/files/pfss/Gogarten.pdfHagedorn, M. (1988). Ecology and behavior of a pulse-type electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae), in a Fresh-Water Stream in Panama. Copeia, 1988(2), 324-335. https://doi.org/10.2307/1445872Hennen, M. J. & Brown, M. L. (2014). Movement and spatial distribution of common carp in a South Dakota glacial lake system: Implications for management and removal. North American Journal of Fisheries Management, 34(6), 1270-1281. https://doi.org/10.1080/02755947.2014.959674Henninger, J., Krahe, R., Sinz, F. & Benda, J. (2020). Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging. Journal of Experimental Biology, 223(3), jeb206342. https://doi.org/10.1242/jeb.206342Ilies, I., Traniello, I. M., Sîrbulescu, R. F. & Zupanc, G. K. H. (2014). Determination of relative age using growth increments of scales as a minimally invasive method in the tropical freshwater Apteronotus leptorhynchus. Journal of Fish Biology, 84(5), 1312-1325. https://doi.org/10.1111/jfb.12354John, L. (2012). Electrocommunication in weakly electric fish: Signal echoing and aggression. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/conf.fnbeh.2012.27.00428Kramer, B. (1990). Electrocommunication in teleost fishes (Vol. 29). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-84026-5Larranaga, N. & Steingrímsson, S. Ó. (2015). Shelter availability alters diel activity and space use in a stream fish. Behavioral Ecology, 26(2), 578-586. https://doi.org/10.1093/beheco/aru234Maldonado-Ocampo, J. A. & Albert, J. S. (2003). Species diversity of gymnotiform fishes (Gymnotiformes, Teleostei) in Colombia. Biota Colombiana, 4(2), Article 2. http://revistas.humboldt.org.co/index.php/biota/article/view/130Miranda, M., Silva, A. C. & Stoddard, P. K. (2008). Use of space as an indicator of social behavior and breeding systems in the gymnotiform electric fish Brachyhypopomus pinnicaudatus. Environmental Biology of Fishes, 83(4), 379-389. https://doi.org/10.1007/s10641-008-9358-2Moller, P. (1995). Electric fishes: History and behavior (1st ed., Vol. 17). Springer Dordrecht. https://link.springer.com/book/9780412373800Mucha, S., Chapman, L. J. & Krahe, R. (2021). The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia. Journal of Comparative Physiology A, 207(3), 369-379. https://doi.org/10.1007/s00359-021-01470-wRaab, T. (2022). Social structures and interactions in electric fish explored by large-scale signal tracking [Dissertation, Universität Tübingen]. https://doi.org/10.15496/publikation-67594Raab, T., Linhart, L., Wurm, A. & Benda, J. (2019). Dominance in habitat preference and diurnal explorative behavior of the weakly wlectric fish Apteronotus leptorhynchus. Frontiers in Integrative Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnint.2019.00021Raab, T., Bayezit, S., Erdle, S. & Benda, J. (2021a). Electric fish use electrocommunication signals to fine tune relative dominance and access to resources (p. 2021.02.04.429572). bioRxiv. https://doi.org/10.1101/2021.02.04.429572Raab, T., Bayezit, S., Erdle, S. & Benda, J. (2021b). Electrocommunication signals indicate motivation to compete during dyadic interactions of an electric fish. Journal of Experimental Biology, 224(19), jeb242905. https://doi.org/10.1242/jeb.242905Raab, T., Madhav, M. S., Jayakumar, R. P., Henninger, J., Cowan, N. J. & Benda, J. (2022). Advances in non-invasive tracking of wave-type electric fish in natural and laboratory settings. Frontiers in Integrative Neuroscience, 16. https://www.frontiersin.org/articles/10.3389/fnint.2022.965211Rasnow, B. & Bower, J. M. (1996). The electric organ discharges of the gymnotiform fishes: I. Apteronotus leptorhynchus. Journal of Comparative Physiology A, 178(3), 383-396. https://doi.org/10.1007/BF00193976Rudiger, K. (2012). Undisturbed long-term monitoring of weakly electric fish in a small stream in Panama. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/conf.fnbeh.2012.27.00319Sánchez Núñez, D. A., Pinilla, G. A. & Mancera Pineda, J. E. (2015). Efectos del uso del suelo en las propiedades edáficas y la escorrentía superficial en una cuenca de la Orinoquía colombiana. Colombia Forestal, 18(2), 255-272. https://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a06Serrano-Fernández, P. (2003). Gradual frequency rises in interacting black ghost knifefish, Apteronotus albifrons. Journal of Comparative Physiology A, 189(9), 685-692. https://doi.org/10.1007/s00359- 003-0445-8Tallarovic, S. & Zakon, H. (2002). Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus. Journal of Comparative Physiology A, 188(8), 649-657. https://doi.org/10.1007/s00359-002-0344-4Triefenbach, F. A. & Zakon, H. H. (2008). Changes in signaling during agonistic interactions between male weakly electric knifefish, Apteronotus leptorhynchus. Animal Behaviour, 75(4), 1263-1272. https://doi.org/10.1016/j.anbehav.2007.09.027Yañez-Dukon, L. A., Vargas Hernández, N. F., Forero Espinosa, I., Locano Montoya, P. & Ruiz- Toquica, J. S. (2021). Evaluación rápida de las familias y grupos trófico de aves asociadas a sabanas y bosques de galería en la Reserva El Caduceo, La María (San Martín, Meta, Colombia). Expeditio Repositorio Institucional UJTL. https://doi.org/10/21579Zubizarreta, L., Quintana, L., Hernández, D., Mello, F. T. de, Meerhoff, M., Honji, R. M., Moreira, R. G. & Silva, A. (2020). Seasonal and social factors associated with spacing in a wild territorial electric fish. PLoS ONE, 15(6), e0228976. https://doi.org/10.1371/journal.pone.0228976201814543Publicationhttps://scholar.google.es/citations?user=nCoNP_MAAAAJvirtual::6666-10000-0003-3018-6726virtual::6666-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001012053virtual::6666-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::6666-19868e8c9-c2f8-458f-9d29-ed9d658b59fevirtual::6666-1TEXTSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdf.txtSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdf.txtExtracted texttext/plain40766https://repositorio.uniandes.edu.co/bitstreams/c4073748-3cd3-42a9-bf60-113ebe70488a/download01024fad33495e199fac135606600ea6MD55201814543_ForAutEntTesis_TraGraSisBib_202320.pdf.txt201814543_ForAutEntTesis_TraGraSisBib_202320.pdf.txtExtracted texttext/plain1152https://repositorio.uniandes.edu.co/bitstreams/a534ce50-58b2-4a67-a30e-cbe3544cf8a2/downloade82ea2c53738253a75b9b210ff6ba973MD57ORIGINALSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdfSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdfTrabajo de gradoapplication/pdf4544980https://repositorio.uniandes.edu.co/bitstreams/30897f46-0f48-461d-a3cc-bfbca40b011f/downloadcbc47e9c6276825d85d01e9b2a8e58a2MD53201814543_ForAutEntTesis_TraGraSisBib_202320.pdf201814543_ForAutEntTesis_TraGraSisBib_202320.pdfHIDEapplication/pdf311964https://repositorio.uniandes.edu.co/bitstreams/73fecc4b-cee2-4893-8fc5-2441f5b96dab/downloadec94d41c2146cbe26f891bafb1d282aaMD54THUMBNAILSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdf.jpgSpatial aggregation and resting places of Apteronotus galvisi (Apteronotidae Gymnotiformes) individuals in a stream in the Orinoquia Region (Meta Colombia).pdf.jpgIM Thumbnailimage/jpeg6803https://repositorio.uniandes.edu.co/bitstreams/aeac9a92-6ca7-4ac1-a0ef-13be5a67768e/download9ea51ab8302e847fad8936f804a9dc42MD56201814543_ForAutEntTesis_TraGraSisBib_202320.pdf.jpg201814543_ForAutEntTesis_TraGraSisBib_202320.pdf.jpgGenerated Thumbnailimage/jpeg11084https://repositorio.uniandes.edu.co/bitstreams/2dd9b709-f381-4273-9a41-789def2375f9/downloada88eb29ed670392e7034534a9db694e0MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/6f08f4d5-9aaf-4c2f-9dc0-153e4a95304e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/51842c77-adaa-47f6-ba79-9114fbf790e1/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/69261oai:repositorio.uniandes.edu.co:1992/692612024-03-13 13:14:33.622http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==