Modular theory and algebraic quantum physics

The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic stat...

Full description

Autores:
Tabban Sabbagh, Souad María
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/54545
Acceso en línea:
http://hdl.handle.net/1992/54545
Palabra clave:
AQFT
Operator algebras
Tomita-Takesaki modular theory
Entropy
Módulos (Algebra)
Teoría cuántica
Teoría de campos (Física)
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_5420f0c77ee72767be11d855aa3cc16d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/54545
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Modular theory and algebraic quantum physics
title Modular theory and algebraic quantum physics
spellingShingle Modular theory and algebraic quantum physics
AQFT
Operator algebras
Tomita-Takesaki modular theory
Entropy
Módulos (Algebra)
Teoría cuántica
Teoría de campos (Física)
Física
title_short Modular theory and algebraic quantum physics
title_full Modular theory and algebraic quantum physics
title_fullStr Modular theory and algebraic quantum physics
title_full_unstemmed Modular theory and algebraic quantum physics
title_sort Modular theory and algebraic quantum physics
dc.creator.fl_str_mv Tabban Sabbagh, Souad María
dc.contributor.advisor.none.fl_str_mv Reyes Lega, Andrés Fernando
dc.contributor.author.none.fl_str_mv Tabban Sabbagh, Souad María
dc.contributor.jury.none.fl_str_mv Cardona Guio, Alexander
Pinzul, Aleksandr Nikolaievich
dc.contributor.researchgroup.es_CO.fl_str_mv QFT y Física Matemática
dc.subject.keyword.none.fl_str_mv AQFT
Operator algebras
Tomita-Takesaki modular theory
Entropy
topic AQFT
Operator algebras
Tomita-Takesaki modular theory
Entropy
Módulos (Algebra)
Teoría cuántica
Teoría de campos (Física)
Física
dc.subject.armarc.none.fl_str_mv Módulos (Algebra)
Teoría cuántica
Teoría de campos (Física)
dc.subject.themes.es_CO.fl_str_mv Física
description The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic states. This entropy can be obtained through the Gelfand-Naimark-Segal (GNS) construction, which leads to a density operator associated to the state. Recently, Balachandran et al. (2013) used the algebraic approach to deal with entanglement in systems of identical particles. As is well known, the standard approach fails in these systems due to the fact that partial trace loses its intended meaning, since the Hilbert space is not a simple tensor product. Instead of partial trace, they considered the restriction of a state to a subsystem, which in the algebraic formulation becomes particularly clear. By means of the GNS construction, they construct density operators such that their restriction to the algebra A coincide with w. Then, the von Neumann entropy of these density operators can be regarded as the entropy of the algebraic state. However, this approach is ambiguous and assigns multiple density operators to the same state. This occurs whenever the irreducible components of the representation appear in the GNS Hilbert space H with multiplicities different from one. In this dissertation, we used Tomita-Takesaki (modular) Theory (TTT) to develop an interpretation of this phenomenon as an emergent gauge symmetry, in the sense of Doplicher, Haag, and Roberts. The gauge group arises from the action of unitaries in the commutant of the representation via TTT. We characterize the ambiguity in the entropy through the modular objects, in particular the modular conjugation. Moreover, we provide a quantum operation which implements the gauge group and increases entropy. In this way, we relate the realm of quantum information theory to that of the theory of gauge fields. We apply the above for two fundamental cases. In the first case, we consider general finite dimensional algebras and we give a physical interpretation in terms of an equivalent description of the system as a bipartite system. In the second case, we consider quantum systems whose classical configuration spaces are homogeneous spaces of the form Q=G/H, where G is a compact Lie group. In this case, the von Neumann algebra is obtained by quantizing Q through an approach based on the use of the transformation group C*-algebras. We prove that the emergent gauge group contains the classical gauge group of Q. Additionally, we also study other applications of TTT to spin chains in the context of Araki's self-dual formalism. In this case, for a given thermal KMS state, the modular theory (through the GNS construction) provides a purification of the KMS state. This construction preserves the canonical anticommutation relations of the fermionic algebra, unlike the one obtained using thermofield dynamics. Possible applications of this approach to the study of quantum phases of matter are also discussed.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-07T20:09:05Z
dc.date.available.none.fl_str_mv 2022-02-07T20:09:05Z
dc.date.issued.none.fl_str_mv 2022-02-26
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/54545
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/54545
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 139 hojas
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3adf1a22-d9d8-4560-b6fe-a3d09fe811f6/download
https://repositorio.uniandes.edu.co/bitstreams/16b8d571-b656-447c-b3a4-c900907b2d53/download
https://repositorio.uniandes.edu.co/bitstreams/914f3f3a-b2d2-45ee-892d-b0af1d767328/download
https://repositorio.uniandes.edu.co/bitstreams/04a35782-6bcb-4bba-8b32-303fd6ef6f33/download
bitstream.checksum.fl_str_mv 40dd7158f9e480f9ce849b67188f5d17
ec3958c868f84df02b838265fb742b02
5aa5c691a1ffe97abd12c2966efcb8d6
e8ac14d19f694a673a29a0546dde8ae8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390363347419136
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Lega, Andrés Fernandovirtual::10702-1Tabban Sabbagh, Souad María27714600Cardona Guio, AlexanderPinzul, Aleksandr NikolaievichQFT y Física Matemática2022-02-07T20:09:05Z2022-02-07T20:09:05Z2022-02-26http://hdl.handle.net/1992/54545instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic states. This entropy can be obtained through the Gelfand-Naimark-Segal (GNS) construction, which leads to a density operator associated to the state. Recently, Balachandran et al. (2013) used the algebraic approach to deal with entanglement in systems of identical particles. As is well known, the standard approach fails in these systems due to the fact that partial trace loses its intended meaning, since the Hilbert space is not a simple tensor product. Instead of partial trace, they considered the restriction of a state to a subsystem, which in the algebraic formulation becomes particularly clear. By means of the GNS construction, they construct density operators such that their restriction to the algebra A coincide with w. Then, the von Neumann entropy of these density operators can be regarded as the entropy of the algebraic state. However, this approach is ambiguous and assigns multiple density operators to the same state. This occurs whenever the irreducible components of the representation appear in the GNS Hilbert space H with multiplicities different from one. In this dissertation, we used Tomita-Takesaki (modular) Theory (TTT) to develop an interpretation of this phenomenon as an emergent gauge symmetry, in the sense of Doplicher, Haag, and Roberts. The gauge group arises from the action of unitaries in the commutant of the representation via TTT. We characterize the ambiguity in the entropy through the modular objects, in particular the modular conjugation. Moreover, we provide a quantum operation which implements the gauge group and increases entropy. In this way, we relate the realm of quantum information theory to that of the theory of gauge fields. We apply the above for two fundamental cases. In the first case, we consider general finite dimensional algebras and we give a physical interpretation in terms of an equivalent description of the system as a bipartite system. In the second case, we consider quantum systems whose classical configuration spaces are homogeneous spaces of the form Q=G/H, where G is a compact Lie group. In this case, the von Neumann algebra is obtained by quantizing Q through an approach based on the use of the transformation group C*-algebras. We prove that the emergent gauge group contains the classical gauge group of Q. Additionally, we also study other applications of TTT to spin chains in the context of Araki's self-dual formalism. In this case, for a given thermal KMS state, the modular theory (through the GNS construction) provides a purification of the KMS state. This construction preserves the canonical anticommutation relations of the fermionic algebra, unlike the one obtained using thermofield dynamics. Possible applications of this approach to the study of quantum phases of matter are also discussed.Doctor en Ciencias - FísicaDoctorado139 hojasengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaModular theory and algebraic quantum physicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDAQFTOperator algebrasTomita-Takesaki modular theoryEntropyMódulos (Algebra)Teoría cuánticaTeoría de campos (Física)Física201528289Publicationhttps://scholar.google.es/citations?user=04V0g64AAAAJvirtual::10702-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::10702-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::10702-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::10702-1ORIGINALTD Tabban.pdfTD Tabban.pdfapplication/pdf807915https://repositorio.uniandes.edu.co/bitstreams/3adf1a22-d9d8-4560-b6fe-a3d09fe811f6/download40dd7158f9e480f9ce849b67188f5d17MD52TEXTTD Tabban.pdf.txtTD Tabban.pdf.txtExtracted texttext/plain271666https://repositorio.uniandes.edu.co/bitstreams/16b8d571-b656-447c-b3a4-c900907b2d53/downloadec3958c868f84df02b838265fb742b02MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/914f3f3a-b2d2-45ee-892d-b0af1d767328/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTD Tabban.pdf.jpgTD Tabban.pdf.jpgIM Thumbnailimage/jpeg3267https://repositorio.uniandes.edu.co/bitstreams/04a35782-6bcb-4bba-8b32-303fd6ef6f33/downloade8ac14d19f694a673a29a0546dde8ae8MD541992/54545oai:repositorio.uniandes.edu.co:1992/545452024-03-13 14:15:14.4http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==