Modular theory and algebraic quantum physics
The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic stat...
- Autores:
-
Tabban Sabbagh, Souad María
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/54545
- Acceso en línea:
- http://hdl.handle.net/1992/54545
- Palabra clave:
- AQFT
Operator algebras
Tomita-Takesaki modular theory
Entropy
Módulos (Algebra)
Teoría cuántica
Teoría de campos (Física)
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_5420f0c77ee72767be11d855aa3cc16d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/54545 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Modular theory and algebraic quantum physics |
title |
Modular theory and algebraic quantum physics |
spellingShingle |
Modular theory and algebraic quantum physics AQFT Operator algebras Tomita-Takesaki modular theory Entropy Módulos (Algebra) Teoría cuántica Teoría de campos (Física) Física |
title_short |
Modular theory and algebraic quantum physics |
title_full |
Modular theory and algebraic quantum physics |
title_fullStr |
Modular theory and algebraic quantum physics |
title_full_unstemmed |
Modular theory and algebraic quantum physics |
title_sort |
Modular theory and algebraic quantum physics |
dc.creator.fl_str_mv |
Tabban Sabbagh, Souad María |
dc.contributor.advisor.none.fl_str_mv |
Reyes Lega, Andrés Fernando |
dc.contributor.author.none.fl_str_mv |
Tabban Sabbagh, Souad María |
dc.contributor.jury.none.fl_str_mv |
Cardona Guio, Alexander Pinzul, Aleksandr Nikolaievich |
dc.contributor.researchgroup.es_CO.fl_str_mv |
QFT y Física Matemática |
dc.subject.keyword.none.fl_str_mv |
AQFT Operator algebras Tomita-Takesaki modular theory Entropy |
topic |
AQFT Operator algebras Tomita-Takesaki modular theory Entropy Módulos (Algebra) Teoría cuántica Teoría de campos (Física) Física |
dc.subject.armarc.none.fl_str_mv |
Módulos (Algebra) Teoría cuántica Teoría de campos (Física) |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic states. This entropy can be obtained through the Gelfand-Naimark-Segal (GNS) construction, which leads to a density operator associated to the state. Recently, Balachandran et al. (2013) used the algebraic approach to deal with entanglement in systems of identical particles. As is well known, the standard approach fails in these systems due to the fact that partial trace loses its intended meaning, since the Hilbert space is not a simple tensor product. Instead of partial trace, they considered the restriction of a state to a subsystem, which in the algebraic formulation becomes particularly clear. By means of the GNS construction, they construct density operators such that their restriction to the algebra A coincide with w. Then, the von Neumann entropy of these density operators can be regarded as the entropy of the algebraic state. However, this approach is ambiguous and assigns multiple density operators to the same state. This occurs whenever the irreducible components of the representation appear in the GNS Hilbert space H with multiplicities different from one. In this dissertation, we used Tomita-Takesaki (modular) Theory (TTT) to develop an interpretation of this phenomenon as an emergent gauge symmetry, in the sense of Doplicher, Haag, and Roberts. The gauge group arises from the action of unitaries in the commutant of the representation via TTT. We characterize the ambiguity in the entropy through the modular objects, in particular the modular conjugation. Moreover, we provide a quantum operation which implements the gauge group and increases entropy. In this way, we relate the realm of quantum information theory to that of the theory of gauge fields. We apply the above for two fundamental cases. In the first case, we consider general finite dimensional algebras and we give a physical interpretation in terms of an equivalent description of the system as a bipartite system. In the second case, we consider quantum systems whose classical configuration spaces are homogeneous spaces of the form Q=G/H, where G is a compact Lie group. In this case, the von Neumann algebra is obtained by quantizing Q through an approach based on the use of the transformation group C*-algebras. We prove that the emergent gauge group contains the classical gauge group of Q. Additionally, we also study other applications of TTT to spin chains in the context of Araki's self-dual formalism. In this case, for a given thermal KMS state, the modular theory (through the GNS construction) provides a purification of the KMS state. This construction preserves the canonical anticommutation relations of the fermionic algebra, unlike the one obtained using thermofield dynamics. Possible applications of this approach to the study of quantum phases of matter are also discussed. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-07T20:09:05Z |
dc.date.available.none.fl_str_mv |
2022-02-07T20:09:05Z |
dc.date.issued.none.fl_str_mv |
2022-02-26 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/54545 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/54545 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/54545 |
identifier_str_mv |
10.57784/1992/54545 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
139 hojas |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3adf1a22-d9d8-4560-b6fe-a3d09fe811f6/download https://repositorio.uniandes.edu.co/bitstreams/16b8d571-b656-447c-b3a4-c900907b2d53/download https://repositorio.uniandes.edu.co/bitstreams/914f3f3a-b2d2-45ee-892d-b0af1d767328/download https://repositorio.uniandes.edu.co/bitstreams/04a35782-6bcb-4bba-8b32-303fd6ef6f33/download |
bitstream.checksum.fl_str_mv |
40dd7158f9e480f9ce849b67188f5d17 ec3958c868f84df02b838265fb742b02 5aa5c691a1ffe97abd12c2966efcb8d6 e8ac14d19f694a673a29a0546dde8ae8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111888715677696 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Lega, Andrés Fernandovirtual::10702-1Tabban Sabbagh, Souad María27714600Cardona Guio, AlexanderPinzul, Aleksandr NikolaievichQFT y Física Matemática2022-02-07T20:09:05Z2022-02-07T20:09:05Z2022-02-26http://hdl.handle.net/1992/5454510.57784/1992/54545instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The description of a quantum physical system, in the algebraic approach, is given through a von Neumann algebra of observables A and a state w on it. In this context, the study of entanglement of quantum systems is relevant. That requires an appropriate assignment of an entropy to the algebraic states. This entropy can be obtained through the Gelfand-Naimark-Segal (GNS) construction, which leads to a density operator associated to the state. Recently, Balachandran et al. (2013) used the algebraic approach to deal with entanglement in systems of identical particles. As is well known, the standard approach fails in these systems due to the fact that partial trace loses its intended meaning, since the Hilbert space is not a simple tensor product. Instead of partial trace, they considered the restriction of a state to a subsystem, which in the algebraic formulation becomes particularly clear. By means of the GNS construction, they construct density operators such that their restriction to the algebra A coincide with w. Then, the von Neumann entropy of these density operators can be regarded as the entropy of the algebraic state. However, this approach is ambiguous and assigns multiple density operators to the same state. This occurs whenever the irreducible components of the representation appear in the GNS Hilbert space H with multiplicities different from one. In this dissertation, we used Tomita-Takesaki (modular) Theory (TTT) to develop an interpretation of this phenomenon as an emergent gauge symmetry, in the sense of Doplicher, Haag, and Roberts. The gauge group arises from the action of unitaries in the commutant of the representation via TTT. We characterize the ambiguity in the entropy through the modular objects, in particular the modular conjugation. Moreover, we provide a quantum operation which implements the gauge group and increases entropy. In this way, we relate the realm of quantum information theory to that of the theory of gauge fields. We apply the above for two fundamental cases. In the first case, we consider general finite dimensional algebras and we give a physical interpretation in terms of an equivalent description of the system as a bipartite system. In the second case, we consider quantum systems whose classical configuration spaces are homogeneous spaces of the form Q=G/H, where G is a compact Lie group. In this case, the von Neumann algebra is obtained by quantizing Q through an approach based on the use of the transformation group C*-algebras. We prove that the emergent gauge group contains the classical gauge group of Q. Additionally, we also study other applications of TTT to spin chains in the context of Araki's self-dual formalism. In this case, for a given thermal KMS state, the modular theory (through the GNS construction) provides a purification of the KMS state. This construction preserves the canonical anticommutation relations of the fermionic algebra, unlike the one obtained using thermofield dynamics. Possible applications of this approach to the study of quantum phases of matter are also discussed.Doctor en Ciencias - FísicaDoctorado139 hojasengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaModular theory and algebraic quantum physicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDAQFTOperator algebrasTomita-Takesaki modular theoryEntropyMódulos (Algebra)Teoría cuánticaTeoría de campos (Física)Física201528289Publicationhttps://scholar.google.es/citations?user=04V0g64AAAAJvirtual::10702-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::10702-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::10702-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::10702-1ORIGINALTD Tabban.pdfTD Tabban.pdfapplication/pdf807915https://repositorio.uniandes.edu.co/bitstreams/3adf1a22-d9d8-4560-b6fe-a3d09fe811f6/download40dd7158f9e480f9ce849b67188f5d17MD52TEXTTD Tabban.pdf.txtTD Tabban.pdf.txtExtracted texttext/plain271666https://repositorio.uniandes.edu.co/bitstreams/16b8d571-b656-447c-b3a4-c900907b2d53/downloadec3958c868f84df02b838265fb742b02MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/914f3f3a-b2d2-45ee-892d-b0af1d767328/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTD Tabban.pdf.jpgTD Tabban.pdf.jpgIM Thumbnailimage/jpeg3267https://repositorio.uniandes.edu.co/bitstreams/04a35782-6bcb-4bba-8b32-303fd6ef6f33/downloade8ac14d19f694a673a29a0546dde8ae8MD541992/54545oai:repositorio.uniandes.edu.co:1992/545452024-08-26 15:24:10.738http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |