Ley de decaimiento cuántico relativista a tiempos largos

The decay law for a unstable state has been known classically as a exponential function, however, quantum mechanics allows to see that this is not the general case, as in short times it has a quadratic behavior and in long times it has an inverse power law behavior. In this context, this law (known...

Full description

Autores:
Guerrero Parra, Andrés Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64162
Acceso en línea:
http://hdl.handle.net/1992/64162
Palabra clave:
Mecánica cuántica relativista
Decaimiento cuántico
Resonancias
Física
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNIANDES2_540b3398d49cf82beab0ede75140e11e
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64162
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Ley de decaimiento cuántico relativista a tiempos largos
title Ley de decaimiento cuántico relativista a tiempos largos
spellingShingle Ley de decaimiento cuántico relativista a tiempos largos
Mecánica cuántica relativista
Decaimiento cuántico
Resonancias
Física
title_short Ley de decaimiento cuántico relativista a tiempos largos
title_full Ley de decaimiento cuántico relativista a tiempos largos
title_fullStr Ley de decaimiento cuántico relativista a tiempos largos
title_full_unstemmed Ley de decaimiento cuántico relativista a tiempos largos
title_sort Ley de decaimiento cuántico relativista a tiempos largos
dc.creator.fl_str_mv Guerrero Parra, Andrés Felipe
dc.contributor.advisor.none.fl_str_mv Kelkar, Neelima Govind
dc.contributor.author.none.fl_str_mv Guerrero Parra, Andrés Felipe
dc.contributor.jury.none.fl_str_mv Nowakowski, Marek
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de Fisica de Altas energias de la Universidad de los Andes
dc.subject.keyword.none.fl_str_mv Mecánica cuántica relativista
Decaimiento cuántico
Resonancias
topic Mecánica cuántica relativista
Decaimiento cuántico
Resonancias
Física
dc.subject.themes.es_CO.fl_str_mv Física
description The decay law for a unstable state has been known classically as a exponential function, however, quantum mechanics allows to see that this is not the general case, as in short times it has a quadratic behavior and in long times it has an inverse power law behavior. In this context, this law (known as the survival or non-decay probability), is the probability that the state in a time t is in its initial state (t=0). In this work, we wanted to study the long time behavior within a special relativity framework for different particles of interest from particle colliders and astrophysical studies. In order to achieve this, first a quantum decay process review was made, along with its long time behavior, its computing methods and the relativistic formalism within, then the computing was made and we obtained numerical results...
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-16
dc.date.accessioned.none.fl_str_mv 2023-01-25T21:13:48Z
dc.date.available.none.fl_str_mv 2023-01-25T21:13:48Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64162
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64162
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Particle Data Group. Particle listings. Tomado de https://pdg.lbl.gov/2022/listings/ contents_listings.html, 2022
D. F. Ramirez. Metodos analíticos para el estudio y determinación de leyes de decaimiento en sistemas resonantes no relativistas, 2018. Tesis de maestría.
L. Fonda, G.C. Ghirardi, and A. Rimini. Decay theory of unstable quantum systems. Rep. Prog. Phys., 41:587-631, 1978
D. F. Ramirez and N. G. Kelkar. Quantum decay law: critical times and the equivalence of approaches. Journal of Physics A: Mathematical and Theoretical, 52:587-631, 2019
K. Urbanowski. Decay law of relativistic particles: Quantum theory meets special relativity. Physics Letters B, 737:346-351, 2014.
K. Urbanowski and K. Raczynska. Possible emission of cosmic X- and -rays by unstable particles at late times. Physics Letters B, 731:236-241, 2014
F. Giraldi. Time Dilation in Relativistic Quantum Decay Laws of Moving Unstable Particles. Adv.High Energy Phys., 2018:1-10, 2018
L. A. Khalfin. Quantum theory of unstable particles and relativity. Institut des Hautes Etudes Scientifique, 1997.
M. Shirokov. Decay law of moving unstable particle. International Journal of Theoretical Physics, 43(6), 2004
F. Giacosa and G. Pagliara. Deviation from the exponential decay law in relativistic quantum field theory: the example of strongly decaying particles. Modern Physics Letters A, 26(30):2247- 2259, 202
N. G. Kelkar and M. Nowakowski. No classical limit of quantum decay for broad states. Journal of Physics A: Mathematical and Theoretical, 43, 2010
N. G. Kelkar, M. Nowakowski, and K. P. Khemchandani. Hidden evidence of non-exponential nuclear decay. Physical Review C, 70(2), 2004
M. Nowakowski and N. Kelkar. Long Tail of Quantum Decay from Scattering Data. AIP Conference Proceedings, 1030(1):250-255, 2008
G. Garcia-Calderon. Resonant states and the decay process. In A. Frank and K. B. Wolf, editors, Symmetries in Physics. Springer, 1992
W. Van Dijk and Y. Nogami. Novel expression for the wave function of a decaying quantum system. Physical Review Letters, 83(15):2867-2871, 1999
C. J. Joachain. Quantum Collision Theory. North-Holland Publishing Company, Bélgica, 1975
D. F. Ramirez and N. G. Kelkar. Formal aspects of quantum decay. Physical Review A, 104(2), 2021
J. Levitan. Small time behaviour of an unstable quantum system. Physics Letter A, 19(5,6):267- 272, 1988.
K. Urbanowski. General properties of the evolution of unstable states at long times. The European Physical Journal D, 54(1):25-29, 2009
F. Giacosa, A. Okopinska, and V. Shastry. A simple alternative to the relativistic Breit Wigner distribution. The European Physical Journal A, 57(336), 2021.
K. Urbanowski. Nonclassical behavior of relativistic unstable particles. Acta Physica Polonica B, 48(8):1411-1432, 2017
L. A. Khalfin. Contribution to the decay theory of a quasi-stationary state. JETP, 3(6):1053- 1063, 1958
D. J. Griffiths. Introduction to electromagnetism. Prentice Hall, 3 edition, 1999
R. A. dInverno. Introducing Einstein's relativity. Oxford University Press, 1992
Raymond A. Serway, Clement J. Moses, and Curt A. Moyer. Física Moderna 3ed. Thomson Learning, Nueva York, Estados Unidos, 2006
D. J. Griffiths. Introduction to elementary particles. John Wiley & Sons, 1987.
F. Giacosa. QFT derivation of the decay law of unstable particle with nonzero momentum. Advances in High Energy Physics, 2018
F. Giacosa. Decay law and time dilation. Acta Physica Polonica B, 47(9), 2016.
J. Bogdanowicz, M. Pindor, and R. Raczka. An analysis of mean life and lifetime of unstable elementary particles. Foundations of physics, 25(6), 1995
F. Giacosa. Non-exponential decay in quantum field theory and in quantum mecanics: the case of two (or more) decay channels. Foundations of Physics, 42(10):1262-1299, 2012.
F. Giacosa. Multichannel decay law. Physics Letters B, 832, 2022
M. J. Ablowitz and A. S. Fokas. Complex Variables: Introduction and Applications. Cambridge University Press, Estados Unidos, 2 edition, 2003
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series: elementary functions, volume 1. Gordon and Breach Science Publishers, 1986.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 29 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3c67989e-dcb5-4721-ac0c-0cc30f7372bf/download
https://repositorio.uniandes.edu.co/bitstreams/8c1fbb3f-fb3d-4fa9-a5e8-cc2ae72f70f1/download
https://repositorio.uniandes.edu.co/bitstreams/2d2d3805-f3cc-408a-a1f6-3323e1a149cf/download
https://repositorio.uniandes.edu.co/bitstreams/32d205a4-b60a-4d40-af7d-bfc587ddaa13/download
https://repositorio.uniandes.edu.co/bitstreams/597e6a48-618b-48ef-b41a-dc0d99ebdd23/download
https://repositorio.uniandes.edu.co/bitstreams/e9cac16b-8af0-4edf-b4c7-a89fd46aa598/download
https://repositorio.uniandes.edu.co/bitstreams/b00c6cc2-e8b1-420b-8640-adf149735be5/download
https://repositorio.uniandes.edu.co/bitstreams/dfde1343-c79f-4202-84fa-d25239a59015/download
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
0b886f43a6f7160eff15f751b0262d92
3a0db61c8bc524ebb5397b1faf104fc9
5aa5c691a1ffe97abd12c2966efcb8d6
28c3f7345c2d48c77f69bbcc80d3eda2
f2d7ccab1e17e09376778b404c4e1a85
c5755657d8c23a612f2f95865e66e329
602e8be16f367141731ca2a08608d9c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134038875406336
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kelkar, Neelima Govindvirtual::15077-1Guerrero Parra, Andrés Feliped02942c6-1d6c-4b20-846c-05983a10c995600Nowakowski, MarekGrupo de Fisica de Altas energias de la Universidad de los Andes2023-01-25T21:13:48Z2023-01-25T21:13:48Z2022-12-16http://hdl.handle.net/1992/64162instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The decay law for a unstable state has been known classically as a exponential function, however, quantum mechanics allows to see that this is not the general case, as in short times it has a quadratic behavior and in long times it has an inverse power law behavior. In this context, this law (known as the survival or non-decay probability), is the probability that the state in a time t is in its initial state (t=0). In this work, we wanted to study the long time behavior within a special relativity framework for different particles of interest from particle colliders and astrophysical studies. In order to achieve this, first a quantum decay process review was made, along with its long time behavior, its computing methods and the relativistic formalism within, then the computing was made and we obtained numerical results...La ley de decaimiento para un estado inestable se ha entendido clásicamente como una función exponencial, sin embargo, la mecánica cuántica permite ver que esto no siempre es así, en donde se presentan un comportamiento cuadrático a tiempos muy cortos y como ley de potencias inversa a tiempos muy largos. Dentro de este contexto, la ley se entiende como la probabilidad de supervivencia o probabilidad de no decaimiento (PND), donde esta es la probabilidad de que una función de onda en un tiempo t sea la misma que en un tiempo t=0. En este trabajo se busca estudiar el comportamiento a tiempos largos dentro del marco de la relatividad especial para distintas partículas relevantes en colisionadores de partículas y en astrofísica. Para esto, inicialmente se realizó una revisión del proceso de decaimiento cuántico, su comportamiento a tiempos largos, sus de métodos de cálculo y el uso del formalismo relativista en estos, posteriormente se realizó el cálculo y se obtuvieron resultados numéricos...FísicoPregrado29 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaLey de decaimiento cuántico relativista a tiempos largosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMecánica cuántica relativistaDecaimiento cuánticoResonanciasFísicaParticle Data Group. Particle listings. Tomado de https://pdg.lbl.gov/2022/listings/ contents_listings.html, 2022D. F. Ramirez. Metodos analíticos para el estudio y determinación de leyes de decaimiento en sistemas resonantes no relativistas, 2018. Tesis de maestría.L. Fonda, G.C. Ghirardi, and A. Rimini. Decay theory of unstable quantum systems. Rep. Prog. Phys., 41:587-631, 1978D. F. Ramirez and N. G. Kelkar. Quantum decay law: critical times and the equivalence of approaches. Journal of Physics A: Mathematical and Theoretical, 52:587-631, 2019K. Urbanowski. Decay law of relativistic particles: Quantum theory meets special relativity. Physics Letters B, 737:346-351, 2014.K. Urbanowski and K. Raczynska. Possible emission of cosmic X- and -rays by unstable particles at late times. Physics Letters B, 731:236-241, 2014F. Giraldi. Time Dilation in Relativistic Quantum Decay Laws of Moving Unstable Particles. Adv.High Energy Phys., 2018:1-10, 2018L. A. Khalfin. Quantum theory of unstable particles and relativity. Institut des Hautes Etudes Scientifique, 1997.M. Shirokov. Decay law of moving unstable particle. International Journal of Theoretical Physics, 43(6), 2004F. Giacosa and G. Pagliara. Deviation from the exponential decay law in relativistic quantum field theory: the example of strongly decaying particles. Modern Physics Letters A, 26(30):2247- 2259, 202N. G. Kelkar and M. Nowakowski. No classical limit of quantum decay for broad states. Journal of Physics A: Mathematical and Theoretical, 43, 2010N. G. Kelkar, M. Nowakowski, and K. P. Khemchandani. Hidden evidence of non-exponential nuclear decay. Physical Review C, 70(2), 2004M. Nowakowski and N. Kelkar. Long Tail of Quantum Decay from Scattering Data. AIP Conference Proceedings, 1030(1):250-255, 2008G. Garcia-Calderon. Resonant states and the decay process. In A. Frank and K. B. Wolf, editors, Symmetries in Physics. Springer, 1992W. Van Dijk and Y. Nogami. Novel expression for the wave function of a decaying quantum system. Physical Review Letters, 83(15):2867-2871, 1999C. J. Joachain. Quantum Collision Theory. North-Holland Publishing Company, Bélgica, 1975D. F. Ramirez and N. G. Kelkar. Formal aspects of quantum decay. Physical Review A, 104(2), 2021J. Levitan. Small time behaviour of an unstable quantum system. Physics Letter A, 19(5,6):267- 272, 1988.K. Urbanowski. General properties of the evolution of unstable states at long times. The European Physical Journal D, 54(1):25-29, 2009F. Giacosa, A. Okopinska, and V. Shastry. A simple alternative to the relativistic Breit Wigner distribution. The European Physical Journal A, 57(336), 2021.K. Urbanowski. Nonclassical behavior of relativistic unstable particles. Acta Physica Polonica B, 48(8):1411-1432, 2017L. A. Khalfin. Contribution to the decay theory of a quasi-stationary state. JETP, 3(6):1053- 1063, 1958D. J. Griffiths. Introduction to electromagnetism. Prentice Hall, 3 edition, 1999R. A. dInverno. Introducing Einstein's relativity. Oxford University Press, 1992Raymond A. Serway, Clement J. Moses, and Curt A. Moyer. Física Moderna 3ed. Thomson Learning, Nueva York, Estados Unidos, 2006D. J. Griffiths. Introduction to elementary particles. John Wiley & Sons, 1987.F. Giacosa. QFT derivation of the decay law of unstable particle with nonzero momentum. Advances in High Energy Physics, 2018F. Giacosa. Decay law and time dilation. Acta Physica Polonica B, 47(9), 2016.J. Bogdanowicz, M. Pindor, and R. Raczka. An analysis of mean life and lifetime of unstable elementary particles. Foundations of physics, 25(6), 1995F. Giacosa. Non-exponential decay in quantum field theory and in quantum mecanics: the case of two (or more) decay channels. Foundations of Physics, 42(10):1262-1299, 2012.F. Giacosa. Multichannel decay law. Physics Letters B, 832, 2022M. J. Ablowitz and A. S. Fokas. Complex Variables: Introduction and Applications. Cambridge University Press, Estados Unidos, 2 edition, 2003A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series: elementary functions, volume 1. Gordon and Breach Science Publishers, 1986.201713298Publicationhttps://scholar.google.es/citations?user=BMxIj5AAAAAJvirtual::15077-10000-0003-1129-8263virtual::15077-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521795virtual::15077-199028683-12da-47c6-b475-e4e674a36d28virtual::15077-199028683-12da-47c6-b475-e4e674a36d28virtual::15077-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/3c67989e-dcb5-4721-ac0c-0cc30f7372bf/download934f4ca17e109e0a05eaeaba504d7ce4MD54ORIGINALmonografia.pdfmonografia.pdfProyecto finalapplication/pdf594936https://repositorio.uniandes.edu.co/bitstreams/8c1fbb3f-fb3d-4fa9-a5e8-cc2ae72f70f1/download0b886f43a6f7160eff15f751b0262d92MD56formato (1).pdfformato (1).pdfHIDEapplication/pdf189564https://repositorio.uniandes.edu.co/bitstreams/2d2d3805-f3cc-408a-a1f6-3323e1a149cf/download3a0db61c8bc524ebb5397b1faf104fc9MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/32d205a4-b60a-4d40-af7d-bfc587ddaa13/download5aa5c691a1ffe97abd12c2966efcb8d6MD53THUMBNAILmonografia.pdf.jpgmonografia.pdf.jpgIM Thumbnailimage/jpeg7823https://repositorio.uniandes.edu.co/bitstreams/597e6a48-618b-48ef-b41a-dc0d99ebdd23/download28c3f7345c2d48c77f69bbcc80d3eda2MD58formato (1).pdf.jpgformato (1).pdf.jpgIM Thumbnailimage/jpeg15925https://repositorio.uniandes.edu.co/bitstreams/e9cac16b-8af0-4edf-b4c7-a89fd46aa598/downloadf2d7ccab1e17e09376778b404c4e1a85MD510TEXTmonografia.pdf.txtmonografia.pdf.txtExtracted texttext/plain54315https://repositorio.uniandes.edu.co/bitstreams/b00c6cc2-e8b1-420b-8640-adf149735be5/downloadc5755657d8c23a612f2f95865e66e329MD57formato (1).pdf.txtformato (1).pdf.txtExtracted texttext/plain1195https://repositorio.uniandes.edu.co/bitstreams/dfde1343-c79f-4202-84fa-d25239a59015/download602e8be16f367141731ca2a08608d9c4MD591992/64162oai:repositorio.uniandes.edu.co:1992/641622024-03-13 15:21:55.747http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==