Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja

Se realizó la depolimerización de PET post consumo a partir de glicólisis catalizada con residuos de cáscara de naranja. Se obtuvo BHET, el cual puede ser utilizado como materia prima para la polimerización de plásticos. Se realizaron diferentes caracterizaciones al material obtenido el cual fue com...

Full description

Autores:
Ayalde Valderrama, Manuela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/60421
Acceso en línea:
http://hdl.handle.net/1992/60421
Palabra clave:
Reciclaje químico
Glicólisis
PET
BHET
FTIR
Ingeniería
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_53fa55b1185b4a6b425a04b07d5930e9
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/60421
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
title Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
spellingShingle Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
Reciclaje químico
Glicólisis
PET
BHET
FTIR
Ingeniería
title_short Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
title_full Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
title_fullStr Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
title_full_unstemmed Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
title_sort Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja
dc.creator.fl_str_mv Ayalde Valderrama, Manuela
dc.contributor.advisor.none.fl_str_mv Salcedo Galán, Felipe
dc.contributor.author.none.fl_str_mv Ayalde Valderrama, Manuela
dc.subject.keyword.none.fl_str_mv Reciclaje químico
Glicólisis
PET
BHET
FTIR
topic Reciclaje químico
Glicólisis
PET
BHET
FTIR
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Se realizó la depolimerización de PET post consumo a partir de glicólisis catalizada con residuos de cáscara de naranja. Se obtuvo BHET, el cual puede ser utilizado como materia prima para la polimerización de plásticos. Se realizaron diferentes caracterizaciones al material obtenido el cual fue comparado con BHET comercial.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-05T16:20:07Z
dc.date.available.none.fl_str_mv 2022-09-05T16:20:07Z
dc.date.issued.none.fl_str_mv 2022-09-02
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/60421
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/60421
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv [1] A. L. Andrady and M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc. , 2009, doi: 10.1098/rstb.2008.0304.
[2] P. Clunies-Ross, Plastics in the Environment, R. Soc. Te Ap¿rangi, vol. 35, no. 4, pp. 230-230, 2019, doi: 10.2307/4444330.
[3] ASTM D883, Standard Terminology relating to Plastics, 2020.
[4] N. L. Thomas, J. Clarke, A. R. McLauchlin, and S. G. Patrick, Oxo-degradable plastics: Degradation, environmental impact and recycling, Proc. Inst. Civ. Eng. Waste Resour. Manag., vol. 165, no. 3, pp. 133-140, Aug. 2012, doi: 10.1680/WARM.11.00014.
[5] L. Filiciotto and G. Rothenberg, Biodegradable Plastics: Standards, Policies, and Impacts, ChemSusChem, vol. 14, no. 1, pp. 56-72, 2021, doi: 10.1002/cssc.202002044.
[6] V. Menicagli, E. Balestri, F. Vallerini, A. Castelli, and C. Lardicci, Adverse effects of nonbiodegradable and compostable plastic bags on the establishment of coastal dune vegetation: First experimental evidences, Environ. Pollut., vol. 252, pp. 188-195, 2019, doi: 10.1016/j.envpol.2019.05.108.
[7] E. Balestri, V. Menicagli, V. Ligorini, S. Fulignati, A. M. Raspolli Galletti, and C. Lardicci, Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test, Ecol. Indic., vol. 102, no. November 2018, pp. 569-580, 2019, doi: 10.1016/j.ecolind.2019.03.005.
[8] A. D5338, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions , Incorporating thermophilic temperatures, vol. 15, no. Reapproved, pp. 4-9, 2021, doi: 10.1520/D5338-15R21.Copyright.
[9] T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J.Polym. Sci., vol. 58, no. 10, pp. 1347-1364, May 2020, doi: 10.1002/POL.20190261.
[10] J. F. Bermudez, A. M. Montoya-Ruiz, and J. F. Saldarriaga, Assessment of the current situation of informal recyclers and recycling: Case study Bogotá, Sustain., vol. 11, no. 22, 2019, doi: 10.3390/su11226342.
[11] C. J. de M. A. Y. salud publica (MASP) Green Peace, Situación actual de Colombia y su impacto en el medio ambiente, Green Peace, p. 14, 2019, [Online]. Available: http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf.
[12] M. Filella, Antimony and PET bottles: Checking facts, Chemosphere, vol. 261, p. 127732, 2020, doi: 10.1016/j.chemosphere.2020.127732.
[13] C. W. Tan et al., Modelling of the injection stretch blow moulding of PET containers via a Pressure-Volume-time (PV-t) thermodynamic relationship, Int. J. Mater. Form., vol. 1, no. SUPPL. 1, pp. 799-802, 2008, doi: 10.1007/s12289-008-0296-5.
[14] PlascticEurope-Association of Plastics Manufactures, Plastics - the Facts 2020, PlasticEurope, pp. 1-64, 2020, [Online]. Available: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.
[15] R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., vol. 3, no. 7, pp. 19-24, 2017.
[16] J. Jiang et al., From plastic waste to wealth using chemical recycling: A review, J. Environ. Chem. Eng., vol. 10, no. 1, p. 106867, Feb. 2022, doi: 10.1016/J.JECE.2021.106867.
[17] M. Shen et al., Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant, Sci. Total Environ., vol. 779, p. 146528, Jul. 2021, doi: 10.1016/J.SCITOTENV.2021.146528.
[18] C. Bach, X. Dauchy, M. C. Chagnon, and S. Etienne, Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed, Water Res., vol. 46, no. 3, pp. 571-583, 2012, doi: 10.1016/j.watres.2011.11.062.
[19] A. C. Espinosa-López et al., Microwave-assisted esterification step of poly(ethylene terephthalate) (PET) synthesis through ethylene glycol and terephthalic acid, Polym. Bull., vol. 76, no. 6, pp. 2931-2944, 2019, doi: 10.1007/s00289-018-2521-9.
[20] A. L. Jadhav, R. S. Malkar, and G. D. Yadav, Zn-and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method, ACS Omega, vol. 5, no. 5, pp. 2088-2096, 2020, doi: 10.1021/acsomega.9b02230.
[21] A. Villalobos Hernández, Estudio del agrietamiento por tensión ambiental de envases de PET, Centro de investigación en química aplicada, 2018.
[22] A. C. Espinosa López, Estudio del proceso de polimerización por microondas del polietilentereftalato y del nanohíbrido PET/TiO2, Centro de investigación en química aplicada,2018.
[23] F. I. Chowdhury, Sustainable resin systems for polymer composites, in Advances in Sustainable Polymer Composites, Woodhead Publishing, 2021, pp. 89-108.
[24] K. Ghosal and C. Nayak, Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs . hype, Mater. Adv., 2022, doi: 10.1039/d1ma01112j.
[25] A. M. Al-Sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie, and A. E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet., vol. 25, no. 1, pp. 53-64, 2016, doi: 10.1016/j.ejpe.2015.03.001.
[26] I. Vollmer et al., Beyond Mechanical Recycling:Giving New Life to Plastic Waste, doi: 10.1002/anie.201915651.
[27] M. Saad Qureshi et al., Pyrolysis of plastic waste: Opportunities and challenges, 2020, doi: 10.1016/j.jaap.2020.104804.
[28] A. R. Rahimi and J. M. Garciá, Chemical recycling of waste plastics for new materials production, Nat. Rev. Chem., vol. 1, Jan. 2017, doi: 10.1038/S41570-017-0046.
[29] M. Han, Depolymerization of PET Bottle via Methanolysis and Hydrolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 85-108, Jan. 2019, doi: 10.1016/B978-0-12-811361-5.00005-5.
[30] S. D. Mancini and M. Zanin, Post consumer pet depolymerization by acid hydrolysis, Polym. - Plast. Technol. Eng., vol. 46, no. 2, pp. 135-144, Feb. 2007, doi: 10.1080/03602550601152945.
[31] M. J. Kang, H. J. Yu, J. Jegal, H. S. Kim, and H. G. Cha, Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst, Chem. Eng. J., vol. 398, no. May, p.125655, 2020, doi: 10.1016/j.cej.2020.125655.
[32] G. P. Karayannidis, A. P. Chatziavgoustis, and D. S. Achilias, Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., vol. 21, no. 4, pp. 250-259, Dec. 2002, doi: 10.1002/ADV.10029.
[33] S. R. Shukla and A. M. Harad, Aminolysis of polyethylene terephthalate waste, Polym. Degrad. Stab., vol. 91, no. 8, pp. 1850-1854, Aug. 2006, doi: 10.1016/J.POLYMDEGRADSTAB.2005.11.005.
[34] N. Tarannum et al., Chemical depolymerization of recycled PET to oxadiazole and hydrazone derivatives: Synthesis, characterization, molecular docking and DFT study, J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101739, 2022, doi: 10.1016/j.jksus.2021.101739.
[35] T. Spychaj, E. Fabrycy, S. Spychaj, and M. Kacperski, Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate) | Request PDF, J. Mater. Cycles Waste Manag., 2001, Accessed: May 18, 2022. [Online]. Available: https://www.researchgate.net/publication/225105600_Aminolysis_and_aminoglycolysis_of_was te_polyethylene_terephthalate.
[36] P. Gupta and S. Bhandari, Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 109-134, Jan. 2019, doi: 10.1016/B978- 0-12-811361-5.00006-7.
[37] A. Mittal, R. K. Soni, K. Dutt, and S. Singh, Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis, J. Hazard. Mater., vol. 178, no. 1-3, pp. 390-396, Jun. 2010, doi: 10.1016/J.JHAZMAT.2010.01.092.
[38] Z. T. Laldinpuii et al., Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-waste Origin, J. Polym. Environ., vol. 30, no. 4, pp. 1600-1614, Apr. 2022, doi: 10.1007/S10924-021- 02305-0.
[39] D. D. Pham and J. Cho, Low-energy catalytic methanolysis of poly(ethyleneterephthalate), Green Chem., vol. 23, no. 1, pp. 511-525, Jan. 2021, doi: 10.1039/D0GC03536J.
[40] S. Lalhmangaihzuala, Z. Laldinpuii, C. Lalmuanpuia, and K. Vanlaldinpuia, Glycolysis of poly(Ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst, Polymers (Basel)., vol. 13, no. 1, pp. 1-13, 2021, doi: 10.3390/polym13010037.
[41] C. T. Pham et al., The advancement of bis(2-hydroxyethyl)terephthalate recovered from postconsumer poly(ethylene terephthalate) bottles compared to commercial polyol for preparation of high performance polyurethane, J. Ind. Eng. Chem., vol. 93, pp. 196-209, Jan. 2021, doi: 10.1016/J.JIEC.2020.09.024.
[42] G. Guclu, A. Kasgoz, S. Osbudak, S. Ozgumus, and M. Orbay, Glycolysis of poly(ethylene terephthalate) wastes in xylene. Journal of Applied Polymer Science, 69(12), 2311-2319 | 10.1002/(sici)1097-4628(19980919)69:12<2311::aid-app2>3.0.co;2-b,¿ 1997, Accessed: May 19,2022. [Online]. Available: https://sci-hub.se/https://doi.org/10.1002/(SICI)1097- 4628(19980919)69:12%3C2311::AID-APP2%3E3.0.CO;2-B.
[43] M. Imran, B. K. Kim, M. Han, B. G. Cho, and D. H. Kim, Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), Polym. Degrad. Stab., vol. 95, no. 9, pp. 1686-1693, 2010, doi: 10.1016/j.polymdegradstab.2010.05.026.
[44] N. D. Pingale and S. R. Shukla, Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste, Eur. Polym. J., vol. 44, no. 12, pp. 4151-4156, Dec. 2008, doi: 10.1016/J.EURPOLYMJ.2008.09.019.
[45] L. Bartolome, M. Imran, B. Gyoo, W. A., and D. Hyun, Recent Developments in the Chemical Recycling of PET, Mater. Recycl. - Trends Perspect., no. March, 2012, doi: 10.5772/33800.
[46] H. Wang, Z. Li, Y. Liu, X. Zhang, and S. Zhang, Degradation of poly(ethylene terephthalate) using ionic liquids, Green Chem., vol. 11, no. 10, pp. 1568-1575, Oct. 2009, doi: 10.1039/B906831G.
[47] G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim, and T. J. Park, One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate), Nanoscale, vol. 4, no. 13, pp. 3879-3885, Jul. 2012, doi: 10.1039/C2NR30168G.
[48] G. Editors et al., Process Simulation of Bis (2-hydroxyethyl) terephthalate and Its Recovery Using Two-stage Evaporation Systems, Chem. Eng. Trans., vol. 63, 2018, doi: 10.3303/CET1863110.
[49] T. Yoshioka, N. Okayama, and A. Okuwaki, Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model, Ind. Eng. Chem. Res., vol. 37, no. 2, pp. 336-340, 1998, doi: 10.1021/IE970459A.
[50] S. Kandasamy, A. Subramaniyan, G. Ramasamy, A. R. Ahamed, N. Manickam, and B. Dhandapani, Study of alkaline hydrolysis of post consumed polyethylene terephthalate waste, AIP Conf. Proc., vol. 2240, May 2020, doi: 10.1063/5.0011020.
[51] L. M. Labban, M. J. Mouzik, and A. D. A. S. Othman, Comparison of Sodium and Potassium Content in Fresh Produce and their Contribution to The Daily Intake, ADR journals, 2017, Accessed: May 27, 2022. [Online]. Available: https://www.researchgate.net/publication/322635434_Comparison_of_Sodium_and_Potassium _Content_in_Fresh_Produce_and_their_Contribution_to_The_Daily_Intake.
[52] A. H. Yasir, A. S. Khalaf, and M. N. Khalaf, Preparation and Characterization of Oligomer from Recycled PET and Evaluated as a Corrosion Inhibitor for C-Steel Material in 0.1 M HCl, Open J. Org. Polym. Mater., vol. 07, no. 01, pp. 1-15, 2017, doi: 10.4236/OJOPM.2017.71001.
[53] A. A. Syariffuddeen, A. Norhafizah, and A. Salmiaton, Glycolysis Of Poly (Ethylene Terephthalate) (PET) Waste Under Conventional Convection-Conductive Glycolysis, Accessed: May 27, 2022. [Online]. Available: www.ijert.org.
[54] Y. Kong and J. N. Hay, Multiple melting behaviour of poly(ethylene terephthalate), Polymer (Guildf)., vol. 44, no. 3, pp. 623-633, Dec. 2002, doi: 10.1016/S0032-3861(02)00814-5.
[55] C. V. G. Silva et al., PET glycolysis optimization using ionic liquid [Bmin]ZnCl 3 as catalyst and kinetic evaluation, Polimeros, vol. 28, no. 5, pp. 450-459, 2018, doi: 10.1590/0104-1428.00418.
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 60 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Química y de Alimentos
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e2d8de04-2e49-410c-b268-5a29b8859c62/download
https://repositorio.uniandes.edu.co/bitstreams/6473e58f-7180-4485-bfa8-8a658e8e1721/download
https://repositorio.uniandes.edu.co/bitstreams/8ed1b460-26e8-46ca-99ca-ba5ad3a44837/download
https://repositorio.uniandes.edu.co/bitstreams/e268db27-f8cf-4ce0-9330-2234663a4946/download
https://repositorio.uniandes.edu.co/bitstreams/db21b550-1ca3-49df-aad8-fa841ab79541/download
https://repositorio.uniandes.edu.co/bitstreams/09f160bf-e630-4266-80f2-96a762ab0bef/download
https://repositorio.uniandes.edu.co/bitstreams/2cc20b92-42c6-46d0-b87e-58cb93aa5404/download
https://repositorio.uniandes.edu.co/bitstreams/8fd61330-f343-4702-a7dc-eb615d482d44/download
bitstream.checksum.fl_str_mv 0175ea4a2d4caec4bbcc37e300941108
9b56c8572739c0581dc26b948bbc292c
4cdd46240adeacd5ef579a2e1ae2b177
b51690f02fb12a5af3409a6fa9202c8e
e8abbdb3ebc54b0a98e48dbf0e526ce9
5aa5c691a1ffe97abd12c2966efcb8d6
7ebbbf2419c6f1fbc2dc67157900427f
4491fe1afb58beaaef41a73cf7ff2e27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134056237727744
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Salcedo Galán, Felipevirtual::16160-1Ayalde Valderrama, Manuelabf0e4303-e1d4-405d-99e0-f36fd86677906002022-09-05T16:20:07Z2022-09-05T16:20:07Z2022-09-02http://hdl.handle.net/1992/60421instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Se realizó la depolimerización de PET post consumo a partir de glicólisis catalizada con residuos de cáscara de naranja. Se obtuvo BHET, el cual puede ser utilizado como materia prima para la polimerización de plásticos. Se realizaron diferentes caracterizaciones al material obtenido el cual fue comparado con BHET comercial.Uno de los principales problemas ambientales actualmente es el de la contaminación por residuos plásticos y una de las soluciones planteadas es la del reciclaje químico. En el presente proyecto se trabajó la glicólisis como reacción para la depolimerización PET, en el cual se utilizaron residuos de botellas plásticas y etilenglicol como reactivos, obteniendo el monómero BHET. Se obtuvo una conversión del 70.49% del PET y una recuperación del 25.7% de BHET. Se utilizó un catalizador fabricado con cenizas de cáscara de naranja, el cual, a diferencia de otros catalizadores reportados en la literatura, es económico y amigable con el medio ambiente. El monómero BHET es frecuentemente utilizado en la industria para la síntesis del polímero PET y se corroboró la identidad del material a partir de caracterizaciones químicas y térmicas. Las caracterizaciones realizadas fueron: FTIR, TGA, DSC, tanto para el PET como para el BHET.Ingeniero QuímicoPregrado60 páginasapplication/pdfspaUniversidad de los AndesIngeniería QuímicaFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranjaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPReciclaje químicoGlicólisisPETBHETFTIRIngeniería[1] A. L. Andrady and M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc. , 2009, doi: 10.1098/rstb.2008.0304.[2] P. Clunies-Ross, Plastics in the Environment, R. Soc. Te Ap¿rangi, vol. 35, no. 4, pp. 230-230, 2019, doi: 10.2307/4444330.[3] ASTM D883, Standard Terminology relating to Plastics, 2020.[4] N. L. Thomas, J. Clarke, A. R. McLauchlin, and S. G. Patrick, Oxo-degradable plastics: Degradation, environmental impact and recycling, Proc. Inst. Civ. Eng. Waste Resour. Manag., vol. 165, no. 3, pp. 133-140, Aug. 2012, doi: 10.1680/WARM.11.00014.[5] L. Filiciotto and G. Rothenberg, Biodegradable Plastics: Standards, Policies, and Impacts, ChemSusChem, vol. 14, no. 1, pp. 56-72, 2021, doi: 10.1002/cssc.202002044.[6] V. Menicagli, E. Balestri, F. Vallerini, A. Castelli, and C. Lardicci, Adverse effects of nonbiodegradable and compostable plastic bags on the establishment of coastal dune vegetation: First experimental evidences, Environ. Pollut., vol. 252, pp. 188-195, 2019, doi: 10.1016/j.envpol.2019.05.108.[7] E. Balestri, V. Menicagli, V. Ligorini, S. Fulignati, A. M. Raspolli Galletti, and C. Lardicci, Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test, Ecol. Indic., vol. 102, no. November 2018, pp. 569-580, 2019, doi: 10.1016/j.ecolind.2019.03.005.[8] A. D5338, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions , Incorporating thermophilic temperatures, vol. 15, no. Reapproved, pp. 4-9, 2021, doi: 10.1520/D5338-15R21.Copyright.[9] T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J.Polym. Sci., vol. 58, no. 10, pp. 1347-1364, May 2020, doi: 10.1002/POL.20190261.[10] J. F. Bermudez, A. M. Montoya-Ruiz, and J. F. Saldarriaga, Assessment of the current situation of informal recyclers and recycling: Case study Bogotá, Sustain., vol. 11, no. 22, 2019, doi: 10.3390/su11226342.[11] C. J. de M. A. Y. salud publica (MASP) Green Peace, Situación actual de Colombia y su impacto en el medio ambiente, Green Peace, p. 14, 2019, [Online]. Available: http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf.[12] M. Filella, Antimony and PET bottles: Checking facts, Chemosphere, vol. 261, p. 127732, 2020, doi: 10.1016/j.chemosphere.2020.127732.[13] C. W. Tan et al., Modelling of the injection stretch blow moulding of PET containers via a Pressure-Volume-time (PV-t) thermodynamic relationship, Int. J. Mater. Form., vol. 1, no. SUPPL. 1, pp. 799-802, 2008, doi: 10.1007/s12289-008-0296-5.[14] PlascticEurope-Association of Plastics Manufactures, Plastics - the Facts 2020, PlasticEurope, pp. 1-64, 2020, [Online]. Available: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.[15] R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., vol. 3, no. 7, pp. 19-24, 2017.[16] J. Jiang et al., From plastic waste to wealth using chemical recycling: A review, J. Environ. Chem. Eng., vol. 10, no. 1, p. 106867, Feb. 2022, doi: 10.1016/J.JECE.2021.106867.[17] M. Shen et al., Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant, Sci. Total Environ., vol. 779, p. 146528, Jul. 2021, doi: 10.1016/J.SCITOTENV.2021.146528.[18] C. Bach, X. Dauchy, M. C. Chagnon, and S. Etienne, Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed, Water Res., vol. 46, no. 3, pp. 571-583, 2012, doi: 10.1016/j.watres.2011.11.062.[19] A. C. Espinosa-López et al., Microwave-assisted esterification step of poly(ethylene terephthalate) (PET) synthesis through ethylene glycol and terephthalic acid, Polym. Bull., vol. 76, no. 6, pp. 2931-2944, 2019, doi: 10.1007/s00289-018-2521-9.[20] A. L. Jadhav, R. S. Malkar, and G. D. Yadav, Zn-and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method, ACS Omega, vol. 5, no. 5, pp. 2088-2096, 2020, doi: 10.1021/acsomega.9b02230.[21] A. Villalobos Hernández, Estudio del agrietamiento por tensión ambiental de envases de PET, Centro de investigación en química aplicada, 2018.[22] A. C. Espinosa López, Estudio del proceso de polimerización por microondas del polietilentereftalato y del nanohíbrido PET/TiO2, Centro de investigación en química aplicada,2018.[23] F. I. Chowdhury, Sustainable resin systems for polymer composites, in Advances in Sustainable Polymer Composites, Woodhead Publishing, 2021, pp. 89-108.[24] K. Ghosal and C. Nayak, Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs . hype, Mater. Adv., 2022, doi: 10.1039/d1ma01112j.[25] A. M. Al-Sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie, and A. E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet., vol. 25, no. 1, pp. 53-64, 2016, doi: 10.1016/j.ejpe.2015.03.001.[26] I. Vollmer et al., Beyond Mechanical Recycling:Giving New Life to Plastic Waste, doi: 10.1002/anie.201915651.[27] M. Saad Qureshi et al., Pyrolysis of plastic waste: Opportunities and challenges, 2020, doi: 10.1016/j.jaap.2020.104804.[28] A. R. Rahimi and J. M. Garciá, Chemical recycling of waste plastics for new materials production, Nat. Rev. Chem., vol. 1, Jan. 2017, doi: 10.1038/S41570-017-0046.[29] M. Han, Depolymerization of PET Bottle via Methanolysis and Hydrolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 85-108, Jan. 2019, doi: 10.1016/B978-0-12-811361-5.00005-5.[30] S. D. Mancini and M. Zanin, Post consumer pet depolymerization by acid hydrolysis, Polym. - Plast. Technol. Eng., vol. 46, no. 2, pp. 135-144, Feb. 2007, doi: 10.1080/03602550601152945.[31] M. J. Kang, H. J. Yu, J. Jegal, H. S. Kim, and H. G. Cha, Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst, Chem. Eng. J., vol. 398, no. May, p.125655, 2020, doi: 10.1016/j.cej.2020.125655.[32] G. P. Karayannidis, A. P. Chatziavgoustis, and D. S. Achilias, Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., vol. 21, no. 4, pp. 250-259, Dec. 2002, doi: 10.1002/ADV.10029.[33] S. R. Shukla and A. M. Harad, Aminolysis of polyethylene terephthalate waste, Polym. Degrad. Stab., vol. 91, no. 8, pp. 1850-1854, Aug. 2006, doi: 10.1016/J.POLYMDEGRADSTAB.2005.11.005.[34] N. Tarannum et al., Chemical depolymerization of recycled PET to oxadiazole and hydrazone derivatives: Synthesis, characterization, molecular docking and DFT study, J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101739, 2022, doi: 10.1016/j.jksus.2021.101739.[35] T. Spychaj, E. Fabrycy, S. Spychaj, and M. Kacperski, Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate) | Request PDF, J. Mater. Cycles Waste Manag., 2001, Accessed: May 18, 2022. [Online]. Available: https://www.researchgate.net/publication/225105600_Aminolysis_and_aminoglycolysis_of_was te_polyethylene_terephthalate.[36] P. Gupta and S. Bhandari, Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 109-134, Jan. 2019, doi: 10.1016/B978- 0-12-811361-5.00006-7.[37] A. Mittal, R. K. Soni, K. Dutt, and S. Singh, Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis, J. Hazard. Mater., vol. 178, no. 1-3, pp. 390-396, Jun. 2010, doi: 10.1016/J.JHAZMAT.2010.01.092.[38] Z. T. Laldinpuii et al., Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-waste Origin, J. Polym. Environ., vol. 30, no. 4, pp. 1600-1614, Apr. 2022, doi: 10.1007/S10924-021- 02305-0.[39] D. D. Pham and J. Cho, Low-energy catalytic methanolysis of poly(ethyleneterephthalate), Green Chem., vol. 23, no. 1, pp. 511-525, Jan. 2021, doi: 10.1039/D0GC03536J.[40] S. Lalhmangaihzuala, Z. Laldinpuii, C. Lalmuanpuia, and K. Vanlaldinpuia, Glycolysis of poly(Ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst, Polymers (Basel)., vol. 13, no. 1, pp. 1-13, 2021, doi: 10.3390/polym13010037.[41] C. T. Pham et al., The advancement of bis(2-hydroxyethyl)terephthalate recovered from postconsumer poly(ethylene terephthalate) bottles compared to commercial polyol for preparation of high performance polyurethane, J. Ind. Eng. Chem., vol. 93, pp. 196-209, Jan. 2021, doi: 10.1016/J.JIEC.2020.09.024.[42] G. Guclu, A. Kasgoz, S. Osbudak, S. Ozgumus, and M. Orbay, Glycolysis of poly(ethylene terephthalate) wastes in xylene. Journal of Applied Polymer Science, 69(12), 2311-2319 | 10.1002/(sici)1097-4628(19980919)69:12<2311::aid-app2>3.0.co;2-b,¿ 1997, Accessed: May 19,2022. [Online]. Available: https://sci-hub.se/https://doi.org/10.1002/(SICI)1097- 4628(19980919)69:12%3C2311::AID-APP2%3E3.0.CO;2-B.[43] M. Imran, B. K. Kim, M. Han, B. G. Cho, and D. H. Kim, Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), Polym. Degrad. Stab., vol. 95, no. 9, pp. 1686-1693, 2010, doi: 10.1016/j.polymdegradstab.2010.05.026.[44] N. D. Pingale and S. R. Shukla, Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste, Eur. Polym. J., vol. 44, no. 12, pp. 4151-4156, Dec. 2008, doi: 10.1016/J.EURPOLYMJ.2008.09.019.[45] L. Bartolome, M. Imran, B. Gyoo, W. A., and D. Hyun, Recent Developments in the Chemical Recycling of PET, Mater. Recycl. - Trends Perspect., no. March, 2012, doi: 10.5772/33800.[46] H. Wang, Z. Li, Y. Liu, X. Zhang, and S. Zhang, Degradation of poly(ethylene terephthalate) using ionic liquids, Green Chem., vol. 11, no. 10, pp. 1568-1575, Oct. 2009, doi: 10.1039/B906831G.[47] G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim, and T. J. Park, One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate), Nanoscale, vol. 4, no. 13, pp. 3879-3885, Jul. 2012, doi: 10.1039/C2NR30168G.[48] G. Editors et al., Process Simulation of Bis (2-hydroxyethyl) terephthalate and Its Recovery Using Two-stage Evaporation Systems, Chem. Eng. Trans., vol. 63, 2018, doi: 10.3303/CET1863110.[49] T. Yoshioka, N. Okayama, and A. Okuwaki, Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model, Ind. Eng. Chem. Res., vol. 37, no. 2, pp. 336-340, 1998, doi: 10.1021/IE970459A.[50] S. Kandasamy, A. Subramaniyan, G. Ramasamy, A. R. Ahamed, N. Manickam, and B. Dhandapani, Study of alkaline hydrolysis of post consumed polyethylene terephthalate waste, AIP Conf. Proc., vol. 2240, May 2020, doi: 10.1063/5.0011020.[51] L. M. Labban, M. J. Mouzik, and A. D. A. S. Othman, Comparison of Sodium and Potassium Content in Fresh Produce and their Contribution to The Daily Intake, ADR journals, 2017, Accessed: May 27, 2022. [Online]. Available: https://www.researchgate.net/publication/322635434_Comparison_of_Sodium_and_Potassium _Content_in_Fresh_Produce_and_their_Contribution_to_The_Daily_Intake.[52] A. H. Yasir, A. S. Khalaf, and M. N. Khalaf, Preparation and Characterization of Oligomer from Recycled PET and Evaluated as a Corrosion Inhibitor for C-Steel Material in 0.1 M HCl, Open J. Org. Polym. Mater., vol. 07, no. 01, pp. 1-15, 2017, doi: 10.4236/OJOPM.2017.71001.[53] A. A. Syariffuddeen, A. Norhafizah, and A. Salmiaton, Glycolysis Of Poly (Ethylene Terephthalate) (PET) Waste Under Conventional Convection-Conductive Glycolysis, Accessed: May 27, 2022. [Online]. Available: www.ijert.org.[54] Y. Kong and J. N. Hay, Multiple melting behaviour of poly(ethylene terephthalate), Polymer (Guildf)., vol. 44, no. 3, pp. 623-633, Dec. 2002, doi: 10.1016/S0032-3861(02)00814-5.[55] C. V. G. Silva et al., PET glycolysis optimization using ionic liquid [Bmin]ZnCl 3 as catalyst and kinetic evaluation, Polimeros, vol. 28, no. 5, pp. 450-459, 2018, doi: 10.1590/0104-1428.00418.201729100Publicationhttps://scholar.google.es/citations?user=zb2UEw8AAAAJvirtual::16160-10000-0002-7039-6448virtual::16160-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000909068virtual::16160-1a7927f54-d3f3-447b-b397-ebe41f3c822avirtual::16160-1a7927f54-d3f3-447b-b397-ebe41f3c822avirtual::16160-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/e2d8de04-2e49-410c-b268-5a29b8859c62/download0175ea4a2d4caec4bbcc37e300941108MD52THUMBNAILObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdf.jpgObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdf.jpgIM Thumbnailimage/jpeg5358https://repositorio.uniandes.edu.co/bitstreams/6473e58f-7180-4485-bfa8-8a658e8e1721/download9b56c8572739c0581dc26b948bbc292cMD56FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdf.jpgFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdf.jpgIM Thumbnailimage/jpeg15790https://repositorio.uniandes.edu.co/bitstreams/8ed1b460-26e8-46ca-99ca-ba5ad3a44837/download4cdd46240adeacd5ef579a2e1ae2b177MD58ORIGINALObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdfObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdfTrabajo de gradoapplication/pdf2924277https://repositorio.uniandes.edu.co/bitstreams/e268db27-f8cf-4ce0-9330-2234663a4946/downloadb51690f02fb12a5af3409a6fa9202c8eMD53FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdfFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdfHIDEapplication/pdf179803https://repositorio.uniandes.edu.co/bitstreams/db21b550-1ca3-49df-aad8-fa841ab79541/downloade8abbdb3ebc54b0a98e48dbf0e526ce9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/09f160bf-e630-4266-80f2-96a762ab0bef/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdf.txtObtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja.pdf.txtExtracted texttext/plain79082https://repositorio.uniandes.edu.co/bitstreams/2cc20b92-42c6-46d0-b87e-58cb93aa5404/download7ebbbf2419c6f1fbc2dc67157900427fMD55FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdf.txtFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/8fd61330-f343-4702-a7dc-eb615d482d44/download4491fe1afb58beaaef41a73cf7ff2e27MD571992/60421oai:repositorio.uniandes.edu.co:1992/604212024-03-13 15:39:07.355http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==