Simulating collisional dark matter using a Lattice Boltzmann method
Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physi...
- Autores:
-
Acevedo Barroso, Javier Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/39260
- Acceso en línea:
- http://hdl.handle.net/1992/39260
- Palabra clave:
- Materia oscura (Astronomía)
Método de Lattice-Boltzmann
Colisiones (Astrofísica)
Astrofotometría
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_52f49b5b7807a1314c1edcbf8cca5a8e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/39260 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Simulating collisional dark matter using a Lattice Boltzmann method |
title |
Simulating collisional dark matter using a Lattice Boltzmann method |
spellingShingle |
Simulating collisional dark matter using a Lattice Boltzmann method Materia oscura (Astronomía) Método de Lattice-Boltzmann Colisiones (Astrofísica) Astrofotometría Física |
title_short |
Simulating collisional dark matter using a Lattice Boltzmann method |
title_full |
Simulating collisional dark matter using a Lattice Boltzmann method |
title_fullStr |
Simulating collisional dark matter using a Lattice Boltzmann method |
title_full_unstemmed |
Simulating collisional dark matter using a Lattice Boltzmann method |
title_sort |
Simulating collisional dark matter using a Lattice Boltzmann method |
dc.creator.fl_str_mv |
Acevedo Barroso, Javier Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Forero Romero, Jaime Ernesto |
dc.contributor.author.none.fl_str_mv |
Acevedo Barroso, Javier Alejandro |
dc.contributor.jury.none.fl_str_mv |
Flórez Bustos, Carlos Andrés |
dc.subject.keyword.es_CO.fl_str_mv |
Materia oscura (Astronomía) Método de Lattice-Boltzmann Colisiones (Astrofísica) Astrofotometría |
topic |
Materia oscura (Astronomía) Método de Lattice-Boltzmann Colisiones (Astrofísica) Astrofotometría Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physics, we ultimately expect dark matter to be a particle outside of the standard model of physics. Additionally, recent measurements on the aftermath of galaxy cluster collisions allow us to constrain the value of the thermally averaged cross section, thus motivating the development of dark matter collisional simulations. On the other hand, Lattice-Boltzmann simulations have been widely used to recreate increasingly complex fluids and boundary conditions, nonetheless, the usual Lattice-Boltzmann scheme does not simulate the entirety of the velocity space, but simply a small number of adventive velocities. Inspired by the work of Philip Mocz, Sauro Succi, and Sebastian Franco, in which a Lattice-Boltzmann scheme is used to simulate the phase space of a collisionless one dimensional dark matter fluid. We implement a Lattice-Boltzmann simulations of the phase space of a collisional one, two, and three dimensional dark matter fluid. For the collisional step, we use the BGK approximation modeled by a relaxation time chosen accordingly to recent measurements of the cross section. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T16:08:10Z |
dc.date.available.none.fl_str_mv |
2020-06-10T16:08:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/39260 |
dc.identifier.pdf.none.fl_str_mv |
u821160.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/39260 |
identifier_str_mv |
u821160.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
69 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/16f492db-036d-410a-9237-274c71845c8f/download https://repositorio.uniandes.edu.co/bitstreams/1db7c30a-cc77-4cb3-8344-1cde5ae693c5/download https://repositorio.uniandes.edu.co/bitstreams/b4857de6-fd7b-4686-a9f6-7d2c50f45e07/download |
bitstream.checksum.fl_str_mv |
62c70dc21182f63065813139f4c69185 10ee55b7be8e37d72ec85aba978b5d16 267798434ddcb11bd52d7999e708ccdb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133898945036288 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Forero Romero, Jaime Ernestovirtual::6422-1Acevedo Barroso, Javier Alejandro709fada1-24a3-4d49-b7f7-cdf7813c0bf4400Flórez Bustos, Carlos Andrés2020-06-10T16:08:10Z2020-06-10T16:08:10Z2018http://hdl.handle.net/1992/39260u821160.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physics, we ultimately expect dark matter to be a particle outside of the standard model of physics. Additionally, recent measurements on the aftermath of galaxy cluster collisions allow us to constrain the value of the thermally averaged cross section, thus motivating the development of dark matter collisional simulations. On the other hand, Lattice-Boltzmann simulations have been widely used to recreate increasingly complex fluids and boundary conditions, nonetheless, the usual Lattice-Boltzmann scheme does not simulate the entirety of the velocity space, but simply a small number of adventive velocities. Inspired by the work of Philip Mocz, Sauro Succi, and Sebastian Franco, in which a Lattice-Boltzmann scheme is used to simulate the phase space of a collisionless one dimensional dark matter fluid. We implement a Lattice-Boltzmann simulations of the phase space of a collisional one, two, and three dimensional dark matter fluid. For the collisional step, we use the BGK approximation modeled by a relaxation time chosen accordingly to recent measurements of the cross section.Usualmente la materia oscura se simula con métodos de N cuerpos, en los que se se muestrea el espacio de fase con el fin de resolver la ecuación de Poisson-Vlasov. Este tipo de simulaciones ha sido esencial tanto para el desarrollo de la cosmología moderna, como para la caracterización de los halos de materia oscura. Con el desarrollo de la física de particulas, esperamos que en últimas la materia oscura sea una particula fuera del modelo estandar. Mediciones recientes del resultado de colisiones entre cúmulos galácticos, permiten dar límites para los valores del promedio térmico de la sección transversal, motivando el desarrollo de simulaciones colisionales de materia oscura. Por otro lado, las simulaciones de Lattice-Boltzmann han sido ampliamente utilizadas para recrear fluidos cada vez más complejos. Sin embargo, la implementación usual no simula el espacio de velocidades en sí, sino un pequeño número de velocidades adventivas. Inspirados en el trabajo realizado por Philip Mocz, Sauro Succi, y Sebastián Franco, en donde se simula el espacio de fase de un fluido no colisional de materia oscura en una dimensión. Implementamos un método de Lattice-Boltzmann para simular un fluido colisional de materia oscura en una, dos y tres dimensiones. Para el paso colisional usamos la aproximación BGK modelada por un tiempo de relajación, seleccionado a partir de mediciones recientes de la sección transversal.FísicoPregrado69 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaSimulating collisional dark matter using a Lattice Boltzmann methodTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPMateria oscura (Astronomía)Método de Lattice-BoltzmannColisiones (Astrofísica)AstrofotometríaFísicaPublicationhttps://scholar.google.es/citations?user=TLTK6WgAAAAJvirtual::6422-10000-0002-2890-3725virtual::6422-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000337102virtual::6422-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::6422-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::6422-1TEXTu821160.pdf.txtu821160.pdf.txtExtracted texttext/plain75216https://repositorio.uniandes.edu.co/bitstreams/16f492db-036d-410a-9237-274c71845c8f/download62c70dc21182f63065813139f4c69185MD54ORIGINALu821160.pdfapplication/pdf8985449https://repositorio.uniandes.edu.co/bitstreams/1db7c30a-cc77-4cb3-8344-1cde5ae693c5/download10ee55b7be8e37d72ec85aba978b5d16MD51THUMBNAILu821160.pdf.jpgu821160.pdf.jpgIM Thumbnailimage/jpeg9490https://repositorio.uniandes.edu.co/bitstreams/b4857de6-fd7b-4686-a9f6-7d2c50f45e07/download267798434ddcb11bd52d7999e708ccdbMD551992/39260oai:repositorio.uniandes.edu.co:1992/392602024-03-13 13:10:46.634http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |