Simulating collisional dark matter using a Lattice Boltzmann method

Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physi...

Full description

Autores:
Acevedo Barroso, Javier Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39260
Acceso en línea:
http://hdl.handle.net/1992/39260
Palabra clave:
Materia oscura (Astronomía)
Método de Lattice-Boltzmann
Colisiones (Astrofísica)
Astrofotometría
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_52f49b5b7807a1314c1edcbf8cca5a8e
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/39260
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Simulating collisional dark matter using a Lattice Boltzmann method
title Simulating collisional dark matter using a Lattice Boltzmann method
spellingShingle Simulating collisional dark matter using a Lattice Boltzmann method
Materia oscura (Astronomía)
Método de Lattice-Boltzmann
Colisiones (Astrofísica)
Astrofotometría
Física
title_short Simulating collisional dark matter using a Lattice Boltzmann method
title_full Simulating collisional dark matter using a Lattice Boltzmann method
title_fullStr Simulating collisional dark matter using a Lattice Boltzmann method
title_full_unstemmed Simulating collisional dark matter using a Lattice Boltzmann method
title_sort Simulating collisional dark matter using a Lattice Boltzmann method
dc.creator.fl_str_mv Acevedo Barroso, Javier Alejandro
dc.contributor.advisor.none.fl_str_mv Forero Romero, Jaime Ernesto
dc.contributor.author.none.fl_str_mv Acevedo Barroso, Javier Alejandro
dc.contributor.jury.none.fl_str_mv Flórez Bustos, Carlos Andrés
dc.subject.keyword.es_CO.fl_str_mv Materia oscura (Astronomía)
Método de Lattice-Boltzmann
Colisiones (Astrofísica)
Astrofotometría
topic Materia oscura (Astronomía)
Método de Lattice-Boltzmann
Colisiones (Astrofísica)
Astrofotometría
Física
dc.subject.themes.none.fl_str_mv Física
description Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physics, we ultimately expect dark matter to be a particle outside of the standard model of physics. Additionally, recent measurements on the aftermath of galaxy cluster collisions allow us to constrain the value of the thermally averaged cross section, thus motivating the development of dark matter collisional simulations. On the other hand, Lattice-Boltzmann simulations have been widely used to recreate increasingly complex fluids and boundary conditions, nonetheless, the usual Lattice-Boltzmann scheme does not simulate the entirety of the velocity space, but simply a small number of adventive velocities. Inspired by the work of Philip Mocz, Sauro Succi, and Sebastian Franco, in which a Lattice-Boltzmann scheme is used to simulate the phase space of a collisionless one dimensional dark matter fluid. We implement a Lattice-Boltzmann simulations of the phase space of a collisional one, two, and three dimensional dark matter fluid. For the collisional step, we use the BGK approximation modeled by a relaxation time chosen accordingly to recent measurements of the cross section.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T16:08:10Z
dc.date.available.none.fl_str_mv 2020-06-10T16:08:10Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/39260
dc.identifier.pdf.none.fl_str_mv u821160.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/39260
identifier_str_mv u821160.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 69 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/16f492db-036d-410a-9237-274c71845c8f/download
https://repositorio.uniandes.edu.co/bitstreams/1db7c30a-cc77-4cb3-8344-1cde5ae693c5/download
https://repositorio.uniandes.edu.co/bitstreams/b4857de6-fd7b-4686-a9f6-7d2c50f45e07/download
bitstream.checksum.fl_str_mv 62c70dc21182f63065813139f4c69185
10ee55b7be8e37d72ec85aba978b5d16
267798434ddcb11bd52d7999e708ccdb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133898945036288
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Forero Romero, Jaime Ernestovirtual::6422-1Acevedo Barroso, Javier Alejandro709fada1-24a3-4d49-b7f7-cdf7813c0bf4400Flórez Bustos, Carlos Andrés2020-06-10T16:08:10Z2020-06-10T16:08:10Z2018http://hdl.handle.net/1992/39260u821160.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Usually, dark matter is simulated with N-body schemes that sample the phase space in order to solve the Poisson-Vlasov equation. These kind of simulations have been essential for the development of modern cosmology and the characterization of dark matter halos. With the development of particle physics, we ultimately expect dark matter to be a particle outside of the standard model of physics. Additionally, recent measurements on the aftermath of galaxy cluster collisions allow us to constrain the value of the thermally averaged cross section, thus motivating the development of dark matter collisional simulations. On the other hand, Lattice-Boltzmann simulations have been widely used to recreate increasingly complex fluids and boundary conditions, nonetheless, the usual Lattice-Boltzmann scheme does not simulate the entirety of the velocity space, but simply a small number of adventive velocities. Inspired by the work of Philip Mocz, Sauro Succi, and Sebastian Franco, in which a Lattice-Boltzmann scheme is used to simulate the phase space of a collisionless one dimensional dark matter fluid. We implement a Lattice-Boltzmann simulations of the phase space of a collisional one, two, and three dimensional dark matter fluid. For the collisional step, we use the BGK approximation modeled by a relaxation time chosen accordingly to recent measurements of the cross section.Usualmente la materia oscura se simula con métodos de N cuerpos, en los que se se muestrea el espacio de fase con el fin de resolver la ecuación de Poisson-Vlasov. Este tipo de simulaciones ha sido esencial tanto para el desarrollo de la cosmología moderna, como para la caracterización de los halos de materia oscura. Con el desarrollo de la física de particulas, esperamos que en últimas la materia oscura sea una particula fuera del modelo estandar. Mediciones recientes del resultado de colisiones entre cúmulos galácticos, permiten dar límites para los valores del promedio térmico de la sección transversal, motivando el desarrollo de simulaciones colisionales de materia oscura. Por otro lado, las simulaciones de Lattice-Boltzmann han sido ampliamente utilizadas para recrear fluidos cada vez más complejos. Sin embargo, la implementación usual no simula el espacio de velocidades en sí, sino un pequeño número de velocidades adventivas. Inspirados en el trabajo realizado por Philip Mocz, Sauro Succi, y Sebastián Franco, en donde se simula el espacio de fase de un fluido no colisional de materia oscura en una dimensión. Implementamos un método de Lattice-Boltzmann para simular un fluido colisional de materia oscura en una, dos y tres dimensiones. Para el paso colisional usamos la aproximación BGK modelada por un tiempo de relajación, seleccionado a partir de mediciones recientes de la sección transversal.FísicoPregrado69 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaSimulating collisional dark matter using a Lattice Boltzmann methodTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPMateria oscura (Astronomía)Método de Lattice-BoltzmannColisiones (Astrofísica)AstrofotometríaFísicaPublicationhttps://scholar.google.es/citations?user=TLTK6WgAAAAJvirtual::6422-10000-0002-2890-3725virtual::6422-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000337102virtual::6422-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::6422-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::6422-1TEXTu821160.pdf.txtu821160.pdf.txtExtracted texttext/plain75216https://repositorio.uniandes.edu.co/bitstreams/16f492db-036d-410a-9237-274c71845c8f/download62c70dc21182f63065813139f4c69185MD54ORIGINALu821160.pdfapplication/pdf8985449https://repositorio.uniandes.edu.co/bitstreams/1db7c30a-cc77-4cb3-8344-1cde5ae693c5/download10ee55b7be8e37d72ec85aba978b5d16MD51THUMBNAILu821160.pdf.jpgu821160.pdf.jpgIM Thumbnailimage/jpeg9490https://repositorio.uniandes.edu.co/bitstreams/b4857de6-fd7b-4686-a9f6-7d2c50f45e07/download267798434ddcb11bd52d7999e708ccdbMD551992/39260oai:repositorio.uniandes.edu.co:1992/392602024-03-13 13:10:46.634http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co