Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions

The development of autonomous systems, such as Unmanned Aerial Vehicles (UAVs), has witnessed significant growth in recent years. Their deployment in emergency response missions has become increasingly crucial due to their potential benefits, such as faster response times. However, these benefits al...

Full description

Autores:
Pardo González, Germán Roberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/67649
Acceso en línea:
http://hdl.handle.net/1992/67649
Palabra clave:
Column Generation
Q-Learning
Reinforcement Learning
OR in emergency response
Drone Deployment
Multi-objective optimisation
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nd/4.0/
id UNIANDES2_5105f9ed212ccf26929153915925a2d4
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/67649
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
title Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
spellingShingle Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
Column Generation
Q-Learning
Reinforcement Learning
OR in emergency response
Drone Deployment
Multi-objective optimisation
Ingeniería
title_short Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
title_full Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
title_fullStr Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
title_full_unstemmed Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
title_sort Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions
dc.creator.fl_str_mv Pardo González, Germán Roberto
dc.contributor.advisor.none.fl_str_mv Gómez Castro, Camilo Hernando
Rodríguez Herrera, Carlos Francisco
dc.contributor.author.none.fl_str_mv Pardo González, Germán Roberto
dc.contributor.jury.none.fl_str_mv Gómez Castro, Camilo Hernando
Alvarez Martínez, David
Lozano, Carlos
dc.subject.keyword.none.fl_str_mv Column Generation
Q-Learning
Reinforcement Learning
OR in emergency response
Drone Deployment
Multi-objective optimisation
topic Column Generation
Q-Learning
Reinforcement Learning
OR in emergency response
Drone Deployment
Multi-objective optimisation
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description The development of autonomous systems, such as Unmanned Aerial Vehicles (UAVs), has witnessed significant growth in recent years. Their deployment in emergency response missions has become increasingly crucial due to their potential benefits, such as faster response times. However, these benefits also raise ethical considerations that must be addressed when utilizing them in emergency scenarios. This work aims to contribute to the fair automation of UAVs in disaster response missions. To achieve this, the Column Generation method is employed to solve the initial routing problem within a specific grid. The primary objectives of this approach are twofold: to maximise population coverage and maximise fairness in the distribution of coverage, with a focus on assisting the most vulnerable individuals. Since the data accounts for two conflicting objectives, only Pareto-optimal solutions are considered and compared based on the assigned weights for each objective. Moreover, the Q-Learning algorithm is utilised to dynamically evaluate and prioritise newly discovered survivors who were not initially expected. This algorithm enables the agent to adapt and make decisions based on the vulnerability of the survivors. In order to address uncertainties inherent in emergency situations, a random variable is incorporated, enabling the agent to learn and make decisions based on new information.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-16T19:54:04Z
dc.date.available.none.fl_str_mv 2023-06-16T19:54:04Z
dc.date.issued.none.fl_str_mv 2023-06-16
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/67649
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/67649
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 270-299. doi:https://doi.org/10.1016/j.comcom.2019.10.014
Anastasiou, A., Kolios, P., Panayiotou, C., & Papadaki, K. (2020). Swarm Path Planning for the Deployment of Drones in Emergency Response Missions. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), (pp. 456-465). Athens. doi:10.1109/ICUAS48674.2020.9213876
Arnold, R. D., Yamaguchi, H., & Tanaka, T. (2018). Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. Journal of International Humanitarian Action, 3-18. doi:https://doi.org/10.1186/s41018-018-0045-4
Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., . . . Rahwan, I. (2018). The Moral Machine experiment. Nature, 59-64. doi:https://doi.org/10.1038/s41586-018-0637-6
Battistuzzi, L., Recchiuto, C. T., & Sgorbissa, A. (2021). Ethical concerns in rescue robotics: a scoping review. Ethics and Information Technology, 863-875. doi:https://doi.org/10.1007/s10676-021-09603-0
Brandao, M., Jirotka, M., Webb, H., & Luff, P. (2020). Fair navigation planning: A resource for characterizing and designing fairness in mobile robots. Artificial Intelligence. doi:https://doi.org/10.1016/j.artint.2020.103259
Ebina, T., & Kinjo, K. (2021). Approaching the social dilemma of autonomous vehicles with a general social welfare function. Engineering Applications of Artificial Intelligence. doi:https://doi.org/10.1016/j.engappai.2021.104390
Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. The Journal of Ethics, 403-418. doi:DOI 10.1007/s10892-017-9252-2
Evans, K., de Moura, N., Chauvier, S., Chatila, R., & Dogan, E. (2020). Ethical Decision Making in Autonomous Vehicles: The AV Ethics project. Science and Engineering Ethics, 3285-3312. doi:https://doi.org/10.1007/s11948-020-00272-8
Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems. A Quarterly Journal of Operations Research, 407-424. doi:https://doi.org/10.1007/s10288-010-0130-z
Geisslinger, M., Poszler, F., & Lienkamp, M. (2023). An Ethical Trajectory Planning Algorithm for Autonomous Vehicles. Nature Machie Intelligence, 137-144. doi:https://doi.org/10.1038/s42256-022-00607-z
Hussain, Q., Feng, H., Grzebieta, R., Brijs, T., & Olivier, J. (2019). The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accident Analysis and Prevention, 241-249. doi:https://doi.org/10.1016/j.aap.2019.05.033
Lozano, L., Duque, D., & Medaglia, A. L. (2016). An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints. Transportation Science, 348-357. doi:http://dx.doi.org/10.1287/trsc.2014.0582
Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 455-465.
Nie, J., Li, G., & Yang, J. (2015). A Study of Fatality Risk and Head Dynamic Response of Cyclist and Pedestrian Based on Passenger Car Accident Data Analysis and Simulations. Traffic Injury Prevention, 76-83. doi:10.1080/15389588.2014.881477
Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 795-821. doi:https://doi.org/10.1016/j.ejor.2018.07.014
Powell, W. B. (2022). Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. John Wiley & Sons.
Saha, S., Vasegaard Elkjaer, A., Nielsen, I., Hapka, A., & Budzisz, H. (2021). UAVs Path Planning under a Bi-Objective Optimization Framework for Smart Cities. Electronics. doi:https://doi.org/10.3390/electronics10101193
Sutton, R., & Barto, A. (2015). Reinforcement Learning: An Introduction. The MIT Press.
Weidinger, L., Mckee, K. R., Everett, R., Huang, S., Zhu, T. O., Chadwick, M. J., . . . Gabriel, I. (2023). Using the Veil of Ignorance to align AI systems with principles of justice. doi:https://doi.org/10.1073/pnas.2213709120
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Mecánica
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/6b069e5f-c41b-4c05-8182-cf89280c44ca/download
https://repositorio.uniandes.edu.co/bitstreams/31fe6cc4-e36d-4cf0-b896-7cd61ae52a65/download
https://repositorio.uniandes.edu.co/bitstreams/eb70b7bf-2e2f-4cb4-a72c-a349afa49a9b/download
https://repositorio.uniandes.edu.co/bitstreams/668c0ad2-2b13-4c1a-b74a-45095c0ab637/download
https://repositorio.uniandes.edu.co/bitstreams/6989e41c-7345-48cd-86f8-47836a3d8fb9/download
https://repositorio.uniandes.edu.co/bitstreams/d2a0532c-7035-46cf-86ad-54c041114cd1/download
https://repositorio.uniandes.edu.co/bitstreams/df05b6f7-2a73-49aa-96c7-c1e6260695e4/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
fc0ea2eaeb8b5f1747381102dcbc99d5
13cc73e54da2eff5d92da95279aa8e3e
350c1f7c84b9d987a940d79aa74f585a
38b5a89a219cf2bcf5d72799d215f899
3b1d67ecffc65df50643d44164421a84
f7d494f61e544413a13e6ba1da2089cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134081919451136
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoreshttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Castro, Camilo Hernandovirtual::17715-1Rodríguez Herrera, Carlos Franciscovirtual::17716-1Pardo González, Germán Roberto88fe26b2-f971-41d5-b6c4-df55364e9f6d600Gómez Castro, Camilo HernandoAlvarez Martínez, DavidLozano, Carlos2023-06-16T19:54:04Z2023-06-16T19:54:04Z2023-06-16http://hdl.handle.net/1992/67649instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The development of autonomous systems, such as Unmanned Aerial Vehicles (UAVs), has witnessed significant growth in recent years. Their deployment in emergency response missions has become increasingly crucial due to their potential benefits, such as faster response times. However, these benefits also raise ethical considerations that must be addressed when utilizing them in emergency scenarios. This work aims to contribute to the fair automation of UAVs in disaster response missions. To achieve this, the Column Generation method is employed to solve the initial routing problem within a specific grid. The primary objectives of this approach are twofold: to maximise population coverage and maximise fairness in the distribution of coverage, with a focus on assisting the most vulnerable individuals. Since the data accounts for two conflicting objectives, only Pareto-optimal solutions are considered and compared based on the assigned weights for each objective. Moreover, the Q-Learning algorithm is utilised to dynamically evaluate and prioritise newly discovered survivors who were not initially expected. This algorithm enables the agent to adapt and make decisions based on the vulnerability of the survivors. In order to address uncertainties inherent in emergency situations, a random variable is incorporated, enabling the agent to learn and make decisions based on new information.Ingeniero MecánicoPregradoapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaFair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missionsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPColumn GenerationQ-LearningReinforcement LearningOR in emergency responseDrone DeploymentMulti-objective optimisationIngenieríaAggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 270-299. doi:https://doi.org/10.1016/j.comcom.2019.10.014Anastasiou, A., Kolios, P., Panayiotou, C., & Papadaki, K. (2020). Swarm Path Planning for the Deployment of Drones in Emergency Response Missions. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), (pp. 456-465). Athens. doi:10.1109/ICUAS48674.2020.9213876Arnold, R. D., Yamaguchi, H., & Tanaka, T. (2018). Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. Journal of International Humanitarian Action, 3-18. doi:https://doi.org/10.1186/s41018-018-0045-4Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., . . . Rahwan, I. (2018). The Moral Machine experiment. Nature, 59-64. doi:https://doi.org/10.1038/s41586-018-0637-6Battistuzzi, L., Recchiuto, C. T., & Sgorbissa, A. (2021). Ethical concerns in rescue robotics: a scoping review. Ethics and Information Technology, 863-875. doi:https://doi.org/10.1007/s10676-021-09603-0Brandao, M., Jirotka, M., Webb, H., & Luff, P. (2020). Fair navigation planning: A resource for characterizing and designing fairness in mobile robots. Artificial Intelligence. doi:https://doi.org/10.1016/j.artint.2020.103259Ebina, T., & Kinjo, K. (2021). Approaching the social dilemma of autonomous vehicles with a general social welfare function. Engineering Applications of Artificial Intelligence. doi:https://doi.org/10.1016/j.engappai.2021.104390Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. The Journal of Ethics, 403-418. doi:DOI 10.1007/s10892-017-9252-2Evans, K., de Moura, N., Chauvier, S., Chatila, R., & Dogan, E. (2020). Ethical Decision Making in Autonomous Vehicles: The AV Ethics project. Science and Engineering Ethics, 3285-3312. doi:https://doi.org/10.1007/s11948-020-00272-8Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems. A Quarterly Journal of Operations Research, 407-424. doi:https://doi.org/10.1007/s10288-010-0130-zGeisslinger, M., Poszler, F., & Lienkamp, M. (2023). An Ethical Trajectory Planning Algorithm for Autonomous Vehicles. Nature Machie Intelligence, 137-144. doi:https://doi.org/10.1038/s42256-022-00607-zHussain, Q., Feng, H., Grzebieta, R., Brijs, T., & Olivier, J. (2019). The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accident Analysis and Prevention, 241-249. doi:https://doi.org/10.1016/j.aap.2019.05.033Lozano, L., Duque, D., & Medaglia, A. L. (2016). An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints. Transportation Science, 348-357. doi:http://dx.doi.org/10.1287/trsc.2014.0582Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 455-465.Nie, J., Li, G., & Yang, J. (2015). A Study of Fatality Risk and Head Dynamic Response of Cyclist and Pedestrian Based on Passenger Car Accident Data Analysis and Simulations. Traffic Injury Prevention, 76-83. doi:10.1080/15389588.2014.881477Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 795-821. doi:https://doi.org/10.1016/j.ejor.2018.07.014Powell, W. B. (2022). Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. John Wiley & Sons.Saha, S., Vasegaard Elkjaer, A., Nielsen, I., Hapka, A., & Budzisz, H. (2021). UAVs Path Planning under a Bi-Objective Optimization Framework for Smart Cities. Electronics. doi:https://doi.org/10.3390/electronics10101193Sutton, R., & Barto, A. (2015). Reinforcement Learning: An Introduction. The MIT Press.Weidinger, L., Mckee, K. R., Everett, R., Huang, S., Zhu, T. O., Chadwick, M. J., . . . Gabriel, I. (2023). Using the Veil of Ignorance to align AI systems with principles of justice. doi:https://doi.org/10.1073/pnas.2213709120201821662Publicationhttps://scholar.google.es/citations?user=O8Cl-rUAAAAJvirtual::17716-10000-0002-7438-8963virtual::17716-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000054020virtual::17716-1c9bd55b2-0b42-4b25-acc4-1391a7c9dd22virtual::17715-1e6d7de00-33cf-432f-9b5d-cdcff3b1f6a1virtual::17716-1c9bd55b2-0b42-4b25-acc4-1391a7c9dd22virtual::17715-1e6d7de00-33cf-432f-9b5d-cdcff3b1f6a1virtual::17716-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/6b069e5f-c41b-4c05-8182-cf89280c44ca/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdfFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdfDocumento en PDF del trabajo de gradoapplication/pdf916601https://repositorio.uniandes.edu.co/bitstreams/31fe6cc4-e36d-4cf0-b896-7cd61ae52a65/downloadfc0ea2eaeb8b5f1747381102dcbc99d5MD54Autorizacion entrega tesis.jpgAutorizacion entrega tesis.jpgHIDEimage/jpeg1975730https://repositorio.uniandes.edu.co/bitstreams/eb70b7bf-2e2f-4cb4-a72c-a349afa49a9b/download13cc73e54da2eff5d92da95279aa8e3eMD53THUMBNAILFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdf.jpgFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdf.jpgIM Thumbnailimage/jpeg15996https://repositorio.uniandes.edu.co/bitstreams/668c0ad2-2b13-4c1a-b74a-45095c0ab637/download350c1f7c84b9d987a940d79aa74f585aMD56Autorizacion entrega tesis.jpg.jpgAutorizacion entrega tesis.jpg.jpgIM Thumbnailimage/jpeg16697https://repositorio.uniandes.edu.co/bitstreams/6989e41c-7345-48cd-86f8-47836a3d8fb9/download38b5a89a219cf2bcf5d72799d215f899MD57TEXTFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdf.txtFair Path Planning for Unmanned Aerial Vehicles (UAVs) in Emergency Response Missions.pdf.txtExtracted texttext/plain42610https://repositorio.uniandes.edu.co/bitstreams/d2a0532c-7035-46cf-86ad-54c041114cd1/download3b1d67ecffc65df50643d44164421a84MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/df05b6f7-2a73-49aa-96c7-c1e6260695e4/downloadf7d494f61e544413a13e6ba1da2089cdMD521992/67649oai:repositorio.uniandes.edu.co:1992/676492024-03-13 16:05:49.349http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==