Assessment of the fractal dimension as a design and operation criterion of water distribution systems

This is the extended version of a research article developed to understand assertive applications of fractal analysis in hydraulic design and operation. By understanding the fractal behavior of feasible design outcomes obtained through mono-objective and bi-objective methodologies, it was possible t...

Full description

Autores:
Gómez Molina, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68697
Acceso en línea:
http://hdl.handle.net/1992/68697
Palabra clave:
Optimization
Fractal Analysis
Urban Water Infrastructure
Water Distribution System Analysis and Design
Water Distribution Systems
OPUS
Genetic Algorithms
NSGA-II
OPUS/NSGA-II
GALAXY
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_50ac6fce7cec7dfe0aad49aea9d48973
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68697
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Assessment of the fractal dimension as a design and operation criterion of water distribution systems
title Assessment of the fractal dimension as a design and operation criterion of water distribution systems
spellingShingle Assessment of the fractal dimension as a design and operation criterion of water distribution systems
Optimization
Fractal Analysis
Urban Water Infrastructure
Water Distribution System Analysis and Design
Water Distribution Systems
OPUS
Genetic Algorithms
NSGA-II
OPUS/NSGA-II
GALAXY
Ingeniería
title_short Assessment of the fractal dimension as a design and operation criterion of water distribution systems
title_full Assessment of the fractal dimension as a design and operation criterion of water distribution systems
title_fullStr Assessment of the fractal dimension as a design and operation criterion of water distribution systems
title_full_unstemmed Assessment of the fractal dimension as a design and operation criterion of water distribution systems
title_sort Assessment of the fractal dimension as a design and operation criterion of water distribution systems
dc.creator.fl_str_mv Gómez Molina, Santiago
dc.contributor.advisor.none.fl_str_mv Saldarriaga Valderrama, Juan Guillermo
dc.contributor.author.none.fl_str_mv Gómez Molina, Santiago
dc.contributor.researchgroup.es_CO.fl_str_mv Water Distribution and Sewerage Systems Research Center (CIACUA)
dc.subject.keyword.none.fl_str_mv Optimization
Fractal Analysis
Urban Water Infrastructure
Water Distribution System Analysis and Design
Water Distribution Systems
OPUS
Genetic Algorithms
NSGA-II
OPUS/NSGA-II
GALAXY
topic Optimization
Fractal Analysis
Urban Water Infrastructure
Water Distribution System Analysis and Design
Water Distribution Systems
OPUS
Genetic Algorithms
NSGA-II
OPUS/NSGA-II
GALAXY
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description This is the extended version of a research article developed to understand assertive applications of fractal analysis in hydraulic design and operation. By understanding the fractal behavior of feasible design outcomes obtained through mono-objective and bi-objective methodologies, it was possible to determine how a measurement of dispersion, organization and complexity could be implemented in hydraulic design and operation through four approaches: (1) in the definition of the topological layout; (2) in the achievement of redundancy requirements; (3) as a pipe aging indicator; (4) as a demand variation indicator. This version can help the reader understand the preliminary stage of this research and some broad ideas that will be better developed in a final published version of this work that will be submitted to the Urban Water Journal. In the future, the conclusions and questions arising from this research hope to contribute to the generalization of the governing principles of Hydraulic Engineering that allow to develop tools to make good design solutions more accessible and easier to implement by stakeholders, water utilities and society.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-24T20:26:33Z
dc.date.available.none.fl_str_mv 2023-07-24T20:26:33Z
dc.date.issued.none.fl_str_mv 2023-07-24
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68697
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68697
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv [1] D. F. Yates, A. B. Templeman, and T. B. Boffey, "The Computational Complexity of the Problem of Determining Least Capital Cost Designs for Water Supply Networks," Engineering Optimization, vol. 7, no. 2, pp. 143-155, Jan. 1984, doi: 10.1080/03052158408960635.
[2] J. Saldarriaga et al., "A Direct Approach for the Near-Optimal Design of Water Distribution Networks Based on Power Use," Water (Basel), vol. 12, no. 4, p. 1037, Apr. 2020, doi: 10.3390/w12041037.
[3] A. Jaramillo and J. Saldarriaga, "Fractal-Based Analysis of the Optimal Hydraulic Gradient Surface in the Optimized Design of Water Distribution Networks," in World Environmental and Water Resources Congress 2022, Reston, VA: American Society of Civil Engineers, Jun. 2022, pp. 1000-1014. doi: 10.1061/9780784484258.093.
[4] I. Wu, "Design of Drip Irrigation Main Lines," Journal of the Irrigation and Drainage Division, vol. 101, no. 4, pp. 265-278, Dec. 1975, doi: 10.1061/JRCEA4.0001064.
[5] A. Jaramillo and J. Saldarriaga, "Fractal Analysis of the Optimal Hydraulic Gradient Surface in Water Distribution Networks," J Water Resour Plan Manag, vol. 149, no. 1, Jan. 2023, doi: 10.1061/(ASCE)WR.1943-5452.0001608.
[6] A. Jaramillo, "Análisis de la geometría fractal de la superficie óptima de presiones en el diseño optimizado de redes de distribución de agua potable," Universidad de los Andes, Bogotá, Colombia, 2020.
[7] K. Diao, D. Butler, and B. Ulanicki, "Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation," Urban Water J, vol. 18, no. 10, pp. 885-895, Nov. 2021, doi: 10.1080/1573062X.2021.1948076.
[8] M. Iwanek, D. Kowalski, B. Kowalska, and P. Suchorab, "Fractal Geometry in Designing and Operating Water Networks," Journal of Ecological Engineering, vol. 21, no. 6, pp. 229-236, Aug. 2020, doi: 10.12911/22998993/123501.
[9] K. Vargas, C. Salcedo, and J. Saldarriaga, "Dimensión fractal e identificación de potenciales sectores de servicio en redes de distribución de agua potable utilizando criterios hidráulicos," Revista Recursos Hídricos, vol. 40, no. 2, pp. 27-38, Dec. 2019, doi: 10.5894/rh40n2-cti3.
[10] J. Saldarriaga, C. Salcedo, M. A. González, C. Ortiz, F. Wiesner, and S. Gómez, "On the Evolution of the Optimal Design of WDS: Shifting towards the Use of a Fractal Criterion," Water (Basel), vol. 14, no. 23, p. 3795, Nov. 2022, doi: 10.3390/w14233795.
[11] K. Falconer, Fractal Geometry. Chichester, UK: John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470013850.
[12] B. Mandelbrot, "Fractals: Form, Chance and Dimension," J Fluid Mech, vol. 92, no. 1, pp. 206-208, May 1979, doi: 10.1017/S0022112079210586.
[13] O. Fujiwara and D. B. Khang, "A two-phase decomposition method for optimal design of looped water distribution networks," Water Resour Res, vol. 26, no. 4, pp. 539-549, Apr. 1990, doi: 10.1029/WR026i004p00539.
[14] J. Reca and J. Martínez, "Genetic algorithms for the design of looped irrigation water distribution networks," Water Resour Res, vol. 42, no. 5, May 2006, doi: 10.1029/2005WR004383.
[15] C. Bragalli, C. D'Ambrosio, J. Lee, A. Lodi, and P. Toth, "On the optimal design of water distribution networks: a practical MINLP approach," Optimization and Engineering, vol. 13, no. 2, pp. 219-246, Jun. 2012, doi: 10.1007/s11081-011-9141-7.
[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002, doi: 10.1109/4235.996017.
[17] D. Páez, C. Salcedo, A. Garzón, M. A. González, and J. Saldarriaga, "Use of Energy-Based Domain Knowledge as Feedback to Evolutionary Algorithms for the Optimization of Water Distribution Networks," Water (Basel), vol. 12, no. 11, p. 3101, Nov. 2020, doi: 10.3390/w12113101.
[18] Q. Wang, D. A. Savi, and Z. Kapelan, "GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems," Water Resour Res, vol. 53, no. 3, pp. 1997-2015, Mar. 2017, doi: 10.1002/2016WR019854.
[19] R. E. Featherstone and K. K. El'Jumaily, "Optimal Diameter Selection for Pipe Networks," Journal of Hydraulic Engineering, vol. 109, no. 2, pp. 221-234, Feb. 1983, doi: 10.1061/(ASCE)0733-9429(1983)109:2(221).
[20] J. Saldarriaga, S. Takahashi, F. Hernéndez, D. M. Díaz, and S. Ochoa, "An Energy Methodology for the Design of Water Distribution Systems," in World Environmental and Water Resources Congress 2010, Reston, VA: American Society of Civil Engineers, May 2010, pp. 4303-4313. doi: 10.1061/41114(371)437.
[21] S. Atkinson, R. Farmani, F. A. Memon, and D. Butler, "Reliability Indicators for Water Distribution System Design: Comparison," J Water Resour Plan Manag, vol. 140, no. 2, pp. 160-168, Feb. 2014, doi: 10.1061/(ASCE)WR.1943-5452.0000304.
[22] X. Zhan, F. Meng, S. Liu, and G. Fu, "Comparing Performance Indicators for Assessing and Building Resilient Water Distribution Systems," J Water Resour Plan Manag, vol. 146, no. 12, Dec. 2020, doi: 10.1061/(ASCE)WR.1943-5452.0001303.
[23] H. Monsef, M. Naghashzadegan, R. Farmani, and A. Jamali, "Deficiency of Reliability Indicators in Water Distribution Networks," J Water Resour Plan Manag, vol. 145, no. 6, Jun. 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001053.
[24] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460.
[25] K. Deb, M. Mohan, and S. Mishra, "Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions," Evol Comput, vol. 13, no. 4, pp. 501-525, Dec. 2005, doi: 10.1162/106365605774666895.
[26] C. R. Tolle, T. R. McJunkin, and D. J. Gorsich, "Suboptimal minimum cluster volume cover-based method for measuring fractal dimension," IEEE Trans Pattern Anal Mach Intell, vol. 25, no. 1, pp. 32-41, Jan. 2003, doi: 10.1109/TPAMI.2003.1159944.
[27] G. Zhou and N. S.-N. Lam, "A comparison of fractal dimension estimators based on multiple surface generation algorithms," Comput Geosci, vol. 31, no. 10, pp. 1260-1269, Dec. 2005, doi: 10.1016/j.cageo.2005.03.016.
[28] K. Vargas and J. Saldarriaga, "Analysis of Fractality in Water Distribution Networks Using Hydraulic Criteria," in World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis, American Society of Civil Engineers, 2019, pp. 564-572.
[29] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460.
[30] L. Ormsbee and T. Walski, "Darcy-Weisbach versus Hazen-Williams: No Calm in West Palm," in World Environmental and Water Resources Congress 2016, Reston, VA: American Society of Civil Engineers, May 2016, pp. 455-464. doi: 10.1061/9780784479865.048.
[31] L. A. Rossman, "EPANET 2 Users Manual," Cincinnati, Ohio, Sep. 2000.
[32] J. Saldarriaga, L. Pulgarrn, P. Cuero, and N. Duque, "Software para la enseñanza de hidráulica de tuberías (Pipeline Hydraulics Academic Software)," SSRN Electronic Journal, 2017, doi: 10.2139/ssrn.3113745.
[33] The Matwhworks Inc., "MATLAB (R2022b)." Natick, Massachussets, 2022.
[34] D. G. Eliades, M. Kyriakou, S. Vrachimis, and M. M. Polycarpou, "EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB," in 14th International Conference on Computing and Control for the Water Industry (CCWI), The Netherlands, 2016.
[35] K. A. Klise, M. Bynum, D. Moriarty, and R. Murray, "A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study," Environmental Modelling & Software, vol. 95, pp. 420-431, Sep. 2017, doi: 10.1016/j.envsoft.2017.06.022.
[36] G. van Rossum, "Python Tutorial. Release 3.11.4." Python Software Foundation, Fredericksburg, Virginia, 2023.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Civil
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Civil y Ambiental
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e5b53669-9f2d-422f-8d30-c3b01686a3a5/download
https://repositorio.uniandes.edu.co/bitstreams/9fe978ef-4e35-48a6-b3bc-6581ecabde7d/download
https://repositorio.uniandes.edu.co/bitstreams/cca83e6b-6e22-4084-a78b-ee6177df5526/download
https://repositorio.uniandes.edu.co/bitstreams/5e9ad027-76c0-4827-8359-e96454ccb38f/download
https://repositorio.uniandes.edu.co/bitstreams/5ba319c8-54f3-47e6-b81a-e86c8578f61b/download
https://repositorio.uniandes.edu.co/bitstreams/8d17cd9c-8145-4757-b93e-157e7b2dad1c/download
https://repositorio.uniandes.edu.co/bitstreams/19e3f200-6abe-43bd-a07d-c919c1941ff3/download
bitstream.checksum.fl_str_mv 88eb7f7eb053d5a13c39108f7f2797b8
6abbba6da8d8574b0d07bf27b13bf851
510921537ce9490514f32afbded719b0
938de801553f8494d3eaf60e7f32130d
b9b579d801fd43c6a9cf732a6976c472
83f5ce466b5b801138db8ae47b824354
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133960166146048
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Saldarriaga Valderrama, Juan Guillermovirtual::10216-1Gómez Molina, Santiago26c040b7-a3e5-49ec-b029-d6427ce6f379600Water Distribution and Sewerage Systems Research Center (CIACUA)2023-07-24T20:26:33Z2023-07-24T20:26:33Z2023-07-24http://hdl.handle.net/1992/68697instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This is the extended version of a research article developed to understand assertive applications of fractal analysis in hydraulic design and operation. By understanding the fractal behavior of feasible design outcomes obtained through mono-objective and bi-objective methodologies, it was possible to determine how a measurement of dispersion, organization and complexity could be implemented in hydraulic design and operation through four approaches: (1) in the definition of the topological layout; (2) in the achievement of redundancy requirements; (3) as a pipe aging indicator; (4) as a demand variation indicator. This version can help the reader understand the preliminary stage of this research and some broad ideas that will be better developed in a final published version of this work that will be submitted to the Urban Water Journal. In the future, the conclusions and questions arising from this research hope to contribute to the generalization of the governing principles of Hydraulic Engineering that allow to develop tools to make good design solutions more accessible and easier to implement by stakeholders, water utilities and society.Ingeniero CivilPregradoWater Distribution Sytem (WDS) Analysis and Designapplication/pdfengUniversidad de los AndesIngeniería CivilFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalAssessment of the fractal dimension as a design and operation criterion of water distribution systemsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPOptimizationFractal AnalysisUrban Water InfrastructureWater Distribution System Analysis and DesignWater Distribution SystemsOPUSGenetic AlgorithmsNSGA-IIOPUS/NSGA-IIGALAXYIngeniería[1] D. F. Yates, A. B. Templeman, and T. B. Boffey, "The Computational Complexity of the Problem of Determining Least Capital Cost Designs for Water Supply Networks," Engineering Optimization, vol. 7, no. 2, pp. 143-155, Jan. 1984, doi: 10.1080/03052158408960635.[2] J. Saldarriaga et al., "A Direct Approach for the Near-Optimal Design of Water Distribution Networks Based on Power Use," Water (Basel), vol. 12, no. 4, p. 1037, Apr. 2020, doi: 10.3390/w12041037.[3] A. Jaramillo and J. Saldarriaga, "Fractal-Based Analysis of the Optimal Hydraulic Gradient Surface in the Optimized Design of Water Distribution Networks," in World Environmental and Water Resources Congress 2022, Reston, VA: American Society of Civil Engineers, Jun. 2022, pp. 1000-1014. doi: 10.1061/9780784484258.093.[4] I. Wu, "Design of Drip Irrigation Main Lines," Journal of the Irrigation and Drainage Division, vol. 101, no. 4, pp. 265-278, Dec. 1975, doi: 10.1061/JRCEA4.0001064.[5] A. Jaramillo and J. Saldarriaga, "Fractal Analysis of the Optimal Hydraulic Gradient Surface in Water Distribution Networks," J Water Resour Plan Manag, vol. 149, no. 1, Jan. 2023, doi: 10.1061/(ASCE)WR.1943-5452.0001608.[6] A. Jaramillo, "Análisis de la geometría fractal de la superficie óptima de presiones en el diseño optimizado de redes de distribución de agua potable," Universidad de los Andes, Bogotá, Colombia, 2020.[7] K. Diao, D. Butler, and B. Ulanicki, "Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation," Urban Water J, vol. 18, no. 10, pp. 885-895, Nov. 2021, doi: 10.1080/1573062X.2021.1948076.[8] M. Iwanek, D. Kowalski, B. Kowalska, and P. Suchorab, "Fractal Geometry in Designing and Operating Water Networks," Journal of Ecological Engineering, vol. 21, no. 6, pp. 229-236, Aug. 2020, doi: 10.12911/22998993/123501.[9] K. Vargas, C. Salcedo, and J. Saldarriaga, "Dimensión fractal e identificación de potenciales sectores de servicio en redes de distribución de agua potable utilizando criterios hidráulicos," Revista Recursos Hídricos, vol. 40, no. 2, pp. 27-38, Dec. 2019, doi: 10.5894/rh40n2-cti3.[10] J. Saldarriaga, C. Salcedo, M. A. González, C. Ortiz, F. Wiesner, and S. Gómez, "On the Evolution of the Optimal Design of WDS: Shifting towards the Use of a Fractal Criterion," Water (Basel), vol. 14, no. 23, p. 3795, Nov. 2022, doi: 10.3390/w14233795.[11] K. Falconer, Fractal Geometry. Chichester, UK: John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470013850.[12] B. Mandelbrot, "Fractals: Form, Chance and Dimension," J Fluid Mech, vol. 92, no. 1, pp. 206-208, May 1979, doi: 10.1017/S0022112079210586.[13] O. Fujiwara and D. B. Khang, "A two-phase decomposition method for optimal design of looped water distribution networks," Water Resour Res, vol. 26, no. 4, pp. 539-549, Apr. 1990, doi: 10.1029/WR026i004p00539.[14] J. Reca and J. Martínez, "Genetic algorithms for the design of looped irrigation water distribution networks," Water Resour Res, vol. 42, no. 5, May 2006, doi: 10.1029/2005WR004383.[15] C. Bragalli, C. D'Ambrosio, J. Lee, A. Lodi, and P. Toth, "On the optimal design of water distribution networks: a practical MINLP approach," Optimization and Engineering, vol. 13, no. 2, pp. 219-246, Jun. 2012, doi: 10.1007/s11081-011-9141-7.[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002, doi: 10.1109/4235.996017.[17] D. Páez, C. Salcedo, A. Garzón, M. A. González, and J. Saldarriaga, "Use of Energy-Based Domain Knowledge as Feedback to Evolutionary Algorithms for the Optimization of Water Distribution Networks," Water (Basel), vol. 12, no. 11, p. 3101, Nov. 2020, doi: 10.3390/w12113101.[18] Q. Wang, D. A. Savi, and Z. Kapelan, "GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems," Water Resour Res, vol. 53, no. 3, pp. 1997-2015, Mar. 2017, doi: 10.1002/2016WR019854.[19] R. E. Featherstone and K. K. El'Jumaily, "Optimal Diameter Selection for Pipe Networks," Journal of Hydraulic Engineering, vol. 109, no. 2, pp. 221-234, Feb. 1983, doi: 10.1061/(ASCE)0733-9429(1983)109:2(221).[20] J. Saldarriaga, S. Takahashi, F. Hernéndez, D. M. Díaz, and S. Ochoa, "An Energy Methodology for the Design of Water Distribution Systems," in World Environmental and Water Resources Congress 2010, Reston, VA: American Society of Civil Engineers, May 2010, pp. 4303-4313. doi: 10.1061/41114(371)437.[21] S. Atkinson, R. Farmani, F. A. Memon, and D. Butler, "Reliability Indicators for Water Distribution System Design: Comparison," J Water Resour Plan Manag, vol. 140, no. 2, pp. 160-168, Feb. 2014, doi: 10.1061/(ASCE)WR.1943-5452.0000304.[22] X. Zhan, F. Meng, S. Liu, and G. Fu, "Comparing Performance Indicators for Assessing and Building Resilient Water Distribution Systems," J Water Resour Plan Manag, vol. 146, no. 12, Dec. 2020, doi: 10.1061/(ASCE)WR.1943-5452.0001303.[23] H. Monsef, M. Naghashzadegan, R. Farmani, and A. Jamali, "Deficiency of Reliability Indicators in Water Distribution Networks," J Water Resour Plan Manag, vol. 145, no. 6, Jun. 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001053.[24] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460.[25] K. Deb, M. Mohan, and S. Mishra, "Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions," Evol Comput, vol. 13, no. 4, pp. 501-525, Dec. 2005, doi: 10.1162/106365605774666895.[26] C. R. Tolle, T. R. McJunkin, and D. J. Gorsich, "Suboptimal minimum cluster volume cover-based method for measuring fractal dimension," IEEE Trans Pattern Anal Mach Intell, vol. 25, no. 1, pp. 32-41, Jan. 2003, doi: 10.1109/TPAMI.2003.1159944.[27] G. Zhou and N. S.-N. Lam, "A comparison of fractal dimension estimators based on multiple surface generation algorithms," Comput Geosci, vol. 31, no. 10, pp. 1260-1269, Dec. 2005, doi: 10.1016/j.cageo.2005.03.016.[28] K. Vargas and J. Saldarriaga, "Analysis of Fractality in Water Distribution Networks Using Hydraulic Criteria," in World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis, American Society of Civil Engineers, 2019, pp. 564-572.[29] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460.[30] L. Ormsbee and T. Walski, "Darcy-Weisbach versus Hazen-Williams: No Calm in West Palm," in World Environmental and Water Resources Congress 2016, Reston, VA: American Society of Civil Engineers, May 2016, pp. 455-464. doi: 10.1061/9780784479865.048.[31] L. A. Rossman, "EPANET 2 Users Manual," Cincinnati, Ohio, Sep. 2000.[32] J. Saldarriaga, L. Pulgarrn, P. Cuero, and N. Duque, "Software para la enseñanza de hidráulica de tuberías (Pipeline Hydraulics Academic Software)," SSRN Electronic Journal, 2017, doi: 10.2139/ssrn.3113745.[33] The Matwhworks Inc., "MATLAB (R2022b)." Natick, Massachussets, 2022.[34] D. G. Eliades, M. Kyriakou, S. Vrachimis, and M. M. Polycarpou, "EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB," in 14th International Conference on Computing and Control for the Water Industry (CCWI), The Netherlands, 2016.[35] K. A. Klise, M. Bynum, D. Moriarty, and R. Murray, "A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study," Environmental Modelling & Software, vol. 95, pp. 420-431, Sep. 2017, doi: 10.1016/j.envsoft.2017.06.022.[36] G. van Rossum, "Python Tutorial. Release 3.11.4." Python Software Foundation, Fredericksburg, Virginia, 2023.201823158Publicationhttps://scholar.google.es/citations?user=Lz0SGpIAAAAJvirtual::10216-10000-0003-1265-2949virtual::10216-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000076848virtual::10216-1b405028a-b4ff-4b84-9e85-97a80148970evirtual::10216-1b405028a-b4ff-4b84-9e85-97a80148970evirtual::10216-1TEXTAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdf.txtAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdf.txtExtracted texttext/plain156423https://repositorio.uniandes.edu.co/bitstreams/e5b53669-9f2d-422f-8d30-c3b01686a3a5/download88eb7f7eb053d5a13c39108f7f2797b8MD54Autorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain1646https://repositorio.uniandes.edu.co/bitstreams/9fe978ef-4e35-48a6-b3bc-6581ecabde7d/download6abbba6da8d8574b0d07bf27b13bf851MD56ORIGINALAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdfAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdfUndergraduate Thesis, Civil Engineeringapplication/pdf4462493https://repositorio.uniandes.edu.co/bitstreams/cca83e6b-6e22-4084-a78b-ee6177df5526/download510921537ce9490514f32afbded719b0MD52Autorizacion.pdfAutorizacion.pdfHIDEapplication/pdf477545https://repositorio.uniandes.edu.co/bitstreams/5e9ad027-76c0-4827-8359-e96454ccb38f/download938de801553f8494d3eaf60e7f32130dMD53THUMBNAILAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdf.jpgAssessment of the Fractal Dimension as a Design and Operation Criterion of Water Distribution Systems.pdf.jpgIM Thumbnailimage/jpeg10571https://repositorio.uniandes.edu.co/bitstreams/5ba319c8-54f3-47e6-b81a-e86c8578f61b/downloadb9b579d801fd43c6a9cf732a6976c472MD55Autorizacion.pdf.jpgAutorizacion.pdf.jpgIM Thumbnailimage/jpeg18870https://repositorio.uniandes.edu.co/bitstreams/8d17cd9c-8145-4757-b93e-157e7b2dad1c/download83f5ce466b5b801138db8ae47b824354MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/19e3f200-6abe-43bd-a07d-c919c1941ff3/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/68697oai:repositorio.uniandes.edu.co:1992/686972024-03-13 14:07:53.935https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==