Aleksandrov-Fenchel's inequality and intrinsic volumes

"We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Br...

Full description

Autores:
Quintero Ospina, Rodolfo Alexander
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/13962
Acceso en línea:
http://hdl.handle.net/1992/13962
Palabra clave:
Geometría convexa
Desigualdades isoperimétricas
Cuerpos convexos
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_509f74ad1b86a750066ca61a31a9f48f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/13962
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Angel Cárdenas, Jairo Andrésf778c8c5-d503-4a6f-81cc-a8efddc2f310500Quintero Ospina, Rodolfo Alexander99605002018-09-28T11:04:41Z2018-09-28T11:04:41Z2016http://hdl.handle.net/1992/13962u754370.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Brunn-Minkowski inequality the isoperimetric inequality for convex bodies. Subsequently, we prove the Aleksandrov-Fenchel inequality using mixed volumes and the reproduction of Aleksandrov's proof found in which corresponds to the first proof of the inequality. We talk later about euclidean intrinsic volumes. We see there that the sequence of intrinsic volumes for any convex body is log-concave. Whether the spherical intrinsic volumes are log-concave remains unknown. Our main contribution was to find explicit formulas for the intrinsic volumes of a spherical polygon. Also we proved that this particular sequence of intrinsic volumes is log-concave using the isoperimetric inequality on the sphere."Magíster en MatemáticasMaestría33 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaAleksandrov-Fenchel's inequality and intrinsic volumesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMGeometría convexaDesigualdades isoperimétricasCuerpos convexosMatemáticasPublicationTEXTu754370.pdf.txtu754370.pdf.txtExtracted texttext/plain57575https://repositorio.uniandes.edu.co/bitstreams/ac4437cf-58cf-4fd1-b8ae-8cf06a4fcf99/downloadf2e0c421118d6cad0b9f981840bb0c38MD54ORIGINALu754370.pdfapplication/pdf308586https://repositorio.uniandes.edu.co/bitstreams/af233854-f235-45fc-8104-eb479dce7f92/download1104572dadad472361e2a1513a2de8beMD51THUMBNAILu754370.pdf.jpgu754370.pdf.jpgIM Thumbnailimage/jpeg6317https://repositorio.uniandes.edu.co/bitstreams/071de4fb-56b3-4314-b7ac-5badf159e1eb/download5fab948924a14dfb02e588fdd8e22036MD551992/13962oai:repositorio.uniandes.edu.co:1992/139622023-10-10 17:21:56.006http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Aleksandrov-Fenchel's inequality and intrinsic volumes
title Aleksandrov-Fenchel's inequality and intrinsic volumes
spellingShingle Aleksandrov-Fenchel's inequality and intrinsic volumes
Geometría convexa
Desigualdades isoperimétricas
Cuerpos convexos
Matemáticas
title_short Aleksandrov-Fenchel's inequality and intrinsic volumes
title_full Aleksandrov-Fenchel's inequality and intrinsic volumes
title_fullStr Aleksandrov-Fenchel's inequality and intrinsic volumes
title_full_unstemmed Aleksandrov-Fenchel's inequality and intrinsic volumes
title_sort Aleksandrov-Fenchel's inequality and intrinsic volumes
dc.creator.fl_str_mv Quintero Ospina, Rodolfo Alexander
dc.contributor.advisor.none.fl_str_mv Angel Cárdenas, Jairo Andrés
dc.contributor.author.none.fl_str_mv Quintero Ospina, Rodolfo Alexander
dc.subject.keyword.es_CO.fl_str_mv Geometría convexa
Desigualdades isoperimétricas
Cuerpos convexos
topic Geometría convexa
Desigualdades isoperimétricas
Cuerpos convexos
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description "We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Brunn-Minkowski inequality the isoperimetric inequality for convex bodies. Subsequently, we prove the Aleksandrov-Fenchel inequality using mixed volumes and the reproduction of Aleksandrov's proof found in which corresponds to the first proof of the inequality. We talk later about euclidean intrinsic volumes. We see there that the sequence of intrinsic volumes for any convex body is log-concave. Whether the spherical intrinsic volumes are log-concave remains unknown. Our main contribution was to find explicit formulas for the intrinsic volumes of a spherical polygon. Also we proved that this particular sequence of intrinsic volumes is log-concave using the isoperimetric inequality on the sphere."
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2018-09-28T11:04:41Z
dc.date.available.none.fl_str_mv 2018-09-28T11:04:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/13962
dc.identifier.pdf.none.fl_str_mv u754370.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/13962
identifier_str_mv u754370.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 33 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ac4437cf-58cf-4fd1-b8ae-8cf06a4fcf99/download
https://repositorio.uniandes.edu.co/bitstreams/af233854-f235-45fc-8104-eb479dce7f92/download
https://repositorio.uniandes.edu.co/bitstreams/071de4fb-56b3-4314-b7ac-5badf159e1eb/download
bitstream.checksum.fl_str_mv f2e0c421118d6cad0b9f981840bb0c38
1104572dadad472361e2a1513a2de8be
5fab948924a14dfb02e588fdd8e22036
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133933342523392