Aleksandrov-Fenchel's inequality and intrinsic volumes
"We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Br...
- Autores:
-
Quintero Ospina, Rodolfo Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/13962
- Acceso en línea:
- http://hdl.handle.net/1992/13962
- Palabra clave:
- Geometría convexa
Desigualdades isoperimétricas
Cuerpos convexos
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_509f74ad1b86a750066ca61a31a9f48f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/13962 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Angel Cárdenas, Jairo Andrésf778c8c5-d503-4a6f-81cc-a8efddc2f310500Quintero Ospina, Rodolfo Alexander99605002018-09-28T11:04:41Z2018-09-28T11:04:41Z2016http://hdl.handle.net/1992/13962u754370.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Brunn-Minkowski inequality the isoperimetric inequality for convex bodies. Subsequently, we prove the Aleksandrov-Fenchel inequality using mixed volumes and the reproduction of Aleksandrov's proof found in which corresponds to the first proof of the inequality. We talk later about euclidean intrinsic volumes. We see there that the sequence of intrinsic volumes for any convex body is log-concave. Whether the spherical intrinsic volumes are log-concave remains unknown. Our main contribution was to find explicit formulas for the intrinsic volumes of a spherical polygon. Also we proved that this particular sequence of intrinsic volumes is log-concave using the isoperimetric inequality on the sphere."Magíster en MatemáticasMaestría33 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaAleksandrov-Fenchel's inequality and intrinsic volumesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMGeometría convexaDesigualdades isoperimétricasCuerpos convexosMatemáticasPublicationTEXTu754370.pdf.txtu754370.pdf.txtExtracted texttext/plain57575https://repositorio.uniandes.edu.co/bitstreams/ac4437cf-58cf-4fd1-b8ae-8cf06a4fcf99/downloadf2e0c421118d6cad0b9f981840bb0c38MD54ORIGINALu754370.pdfapplication/pdf308586https://repositorio.uniandes.edu.co/bitstreams/af233854-f235-45fc-8104-eb479dce7f92/download1104572dadad472361e2a1513a2de8beMD51THUMBNAILu754370.pdf.jpgu754370.pdf.jpgIM Thumbnailimage/jpeg6317https://repositorio.uniandes.edu.co/bitstreams/071de4fb-56b3-4314-b7ac-5badf159e1eb/download5fab948924a14dfb02e588fdd8e22036MD551992/13962oai:repositorio.uniandes.edu.co:1992/139622023-10-10 17:21:56.006http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
title |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
spellingShingle |
Aleksandrov-Fenchel's inequality and intrinsic volumes Geometría convexa Desigualdades isoperimétricas Cuerpos convexos Matemáticas |
title_short |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
title_full |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
title_fullStr |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
title_full_unstemmed |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
title_sort |
Aleksandrov-Fenchel's inequality and intrinsic volumes |
dc.creator.fl_str_mv |
Quintero Ospina, Rodolfo Alexander |
dc.contributor.advisor.none.fl_str_mv |
Angel Cárdenas, Jairo Andrés |
dc.contributor.author.none.fl_str_mv |
Quintero Ospina, Rodolfo Alexander |
dc.subject.keyword.es_CO.fl_str_mv |
Geometría convexa Desigualdades isoperimétricas Cuerpos convexos |
topic |
Geometría convexa Desigualdades isoperimétricas Cuerpos convexos Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
"We study in this thesis the Brunn-Minkowski inequality in the euclidean space and the Aleksandrov-Fenchel inequality for convex bodies. We do this in order to get a better comprehension of the intrinsic volumes (euclidean and spherical) and their properties. We get as a consequence from the Brunn-Minkowski inequality the isoperimetric inequality for convex bodies. Subsequently, we prove the Aleksandrov-Fenchel inequality using mixed volumes and the reproduction of Aleksandrov's proof found in which corresponds to the first proof of the inequality. We talk later about euclidean intrinsic volumes. We see there that the sequence of intrinsic volumes for any convex body is log-concave. Whether the spherical intrinsic volumes are log-concave remains unknown. Our main contribution was to find explicit formulas for the intrinsic volumes of a spherical polygon. Also we proved that this particular sequence of intrinsic volumes is log-concave using the isoperimetric inequality on the sphere." |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-09-28T11:04:41Z |
dc.date.available.none.fl_str_mv |
2018-09-28T11:04:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/13962 |
dc.identifier.pdf.none.fl_str_mv |
u754370.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/13962 |
identifier_str_mv |
u754370.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
33 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ac4437cf-58cf-4fd1-b8ae-8cf06a4fcf99/download https://repositorio.uniandes.edu.co/bitstreams/af233854-f235-45fc-8104-eb479dce7f92/download https://repositorio.uniandes.edu.co/bitstreams/071de4fb-56b3-4314-b7ac-5badf159e1eb/download |
bitstream.checksum.fl_str_mv |
f2e0c421118d6cad0b9f981840bb0c38 1104572dadad472361e2a1513a2de8be 5fab948924a14dfb02e588fdd8e22036 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133933342523392 |