Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia

Las Ánimas es un complejo volcánico ubicado en los Andes del Norte de Colombia, sobre la Cordillera Central. En este estudio se presenta el análisis de roca total de elementos mayores y traza para 19 muestras de pómez provenientes de Las Ánimas, las cuales corresponden a andesitas y dacitas calcoalc...

Full description

Autores:
Aldana Lozano, Ciro Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64295
Acceso en línea:
http://hdl.handle.net/1992/64295
Palabra clave:
Complejo Volcánico Las Ánimas
Cristalización fraccionada
Diferenciación magmática
Geoquímica de roca total
Petrogénesis
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_5002dff54afe752a32dc75b9e32aa069
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64295
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
title Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
spellingShingle Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
Complejo Volcánico Las Ánimas
Cristalización fraccionada
Diferenciación magmática
Geoquímica de roca total
Petrogénesis
Geociencias
title_short Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
title_full Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
title_fullStr Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
title_full_unstemmed Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
title_sort Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, Colombia
dc.creator.fl_str_mv Aldana Lozano, Ciro Alejandro
dc.contributor.advisor.none.fl_str_mv Pardo Villaveces, Natalia
dc.contributor.author.none.fl_str_mv Aldana Lozano, Ciro Alejandro
dc.contributor.jury.none.fl_str_mv Sierra Rojas, Maria Isabel
dc.subject.keyword.none.fl_str_mv Complejo Volcánico Las Ánimas
Cristalización fraccionada
Diferenciación magmática
Geoquímica de roca total
Petrogénesis
topic Complejo Volcánico Las Ánimas
Cristalización fraccionada
Diferenciación magmática
Geoquímica de roca total
Petrogénesis
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description Las Ánimas es un complejo volcánico ubicado en los Andes del Norte de Colombia, sobre la Cordillera Central. En este estudio se presenta el análisis de roca total de elementos mayores y traza para 19 muestras de pómez provenientes de Las Ánimas, las cuales corresponden a andesitas y dacitas calcoalcalinas. Las variaciones de elementos mayores y traza indican el fraccionamiento de plagioclasa, anfíbol, piroxeno y óxidos Fe-Ti. Las tendencias químicas podrían indicar que la cristalización fraccionada no explica todos los datos y pudo haber influencia de otros procesos, tales como la contaminación cortical. También se analizaron 4 láminas delgadas donde se corroboró la cristalización de los minerales ya mencionados y se obtuvo soporte textural de las distintas fases. En particular, no se encontró evidencia textural de desequilibrio químico. No obstante, dada la ausencia de información isotópica y la limitada cantidad de muestras analizadas petrográficamente, se sugiere la elaboración de estudios que permitan complementar estos análisis.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12
dc.date.accessioned.none.fl_str_mv 2023-01-27T19:34:25Z
dc.date.available.none.fl_str_mv 2023-01-27T19:34:25Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64295
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64295
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Anderson, A. T. (1976). Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1(1), 3-33.
Arce, J. L., Walker, J., & Keppie, J. D. (2014). Petrology of two contrasting Mexican volcanoes, the Chiapanecan (El Chichón) and Central American (Tacaná) volcanic belts: the result of rift-versus subduction-related volcanism. International Geology Review, 56(4), 501-524.
Arculus, R. J. (1981). Island-arc magma sources: a geochemical assessment of the roles of slab-derived components and crustal contamination. Geochemical Journal, 15(3), 109-133.
Arculus, R. J. (1987). The significance of source versus process in the tectonic controls of magma genesis. Journal of Volcanology and Geothermal Research, 32(1-3), 1-12.
Arculus, R. J. (1994). Aspects of magma genesis in arcs. Lithos, 33(1-3), 189-208.
Bowen, N. L. (1928), The Evolution of Igneous Rocks. Princeton, New Jersey USA.
Capra, L., Carreras, L. M., Arce, J. L., & Macías, J. L. (2006). The Lower Toluca Pumice: A ca. 21,700 yrB. P. Plinian eruption ofNevado de Toluca volcano, México. Neogene-Quaternary continental margin volcanism: A perspective from Mexico, 402, 155.
Castro, A., Gerya, T., García-Casco, A., Fernández, C., Díaz-Alvarado, J., Moreno-Ventas, I., & Löw, I. (2010). Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. Journal of Petrology, 51(6), 1267-1295.
Cerný, P. (1991). Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?. Precambrian Research, 51(1-4), 429-468.
Chen, Z., Zeng, Z., Yin, X., Wang, X., Zhang, Y., Chen, S., & Li, X. (2018). Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: Constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes. Geological Journal, 54(1), 316-332.
Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. A. (2016). Subduction system and flat slab beneath the E astern C ordillera of C olombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27.
Conder, J. A., Wiens, D. A., & Morris, J. (2002). On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophysical Research Letters, 29(15), 17-1.
Cribb, J. W., & Barton, M. (1996). Geochemical effects of decoupled fractional crystallization and crustal assimilation. Lithos, 37(4), 293-307.
De Silva, S. L., Harmon, R. S., & Rapela, C. W. (1991). Styles of zoning in central Andean ignimbrites; insights into magma chamber processes. Andean magmatism and its tectonic setting: Geological Society of America Special Paper, 265, 217-232.
Defant, M. J., Maury, R. C., Ripley, E. M., Feigenson, M. D., & Jacques, D. (1991). An example of island-arc petrogenesis: geochemistry and petrology of the southern Luzon arc, Philippines. Journal of Petrology, 32(3), 455-500.
Defant, M. J., & Drummond, M. S. (1993). Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6), 547-550.
Fernandez S, S., & Hernandez P, A., 1991. Cálculos y diagramas geoquímicos. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 340.
Floyd, P. A., & Winchester, J. A. (1975). Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, 27(2), 211-218.
Freymueller, J. T., Kellogg, J. N., & Vega, V. (1993). Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12), 21853-21863.
Gill, J. (1982). Orogenic andesites and plate tectonics. Berlín: Springer-Verlag.
Gorshkov, G. (2012). Volcanism and the upper mantle: investigations in the Kurile Island Arc. Springer Science & Business Media.
Green, T. H., Island arc and continent-building cients for trace elements in high silica rhyolites, magmatism--A review of petrogenetic models based on Geochim. Cosmochim. Acta, 47, 11-30, 1983. experimental petrology and geochemistry, TeetonG- Matsuhisa, Y. and H. Kurassawa, Oxygen and strontium physics, 63, 367-383, 1980.
Greig, J.W., (1927). Immiscibility in silicate melts. Am. J. Sci., 13, 133 - 154.
Grove, T. L., & Kinzler, R. J. (1986). Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences, 14, 417.
Grove, T., Parman, S., Bowring, S., Price, R., & Baker, M. (2002). The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142(4), 375-396.
Grove, T. L., & Till, C. B. (2015). Melting the Earth's Upper Mantle. In The Encyclopedia of Volcanoes (pp. 35-47). Academic Press.
Hall, M. L., & Wood, C. A. (1985). Volcano-tectonic segmentation of the northern Andes. Geology, 13(3), 203-207.
Harker, A. (1909) The natural history of igneous rocks. Macmillan, New York. Iwamori, H. (1998). Transportation of H2O and melting in subduction zones. Earth and Planetary Science Letters, 160(1-2), 65-80.
Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2), 117-132.
Kelemen, P. B., Shimizu, N., & Dunn, T. (1993). Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120(3-4), 111-134.
Kelemen, P., Hanghoj, K. & Greene, A. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust (Chapter 3.18). En Holland, H. & Turekian, K. (Eds.), Treatise on Geochemistry, pp. 593- 569, vol. 3 The Crust. Oxford: Elsevier-Pergamon.
LaFemina, P. C. (2015). Plate tectonics and volcanism. In The encyclopedia of volcanoes (pp. 65-92). Academic Press.
Le Pennec, J. L., De Saulieu, G., Samaniego, P., Jaya, D., & Gailler, L. (2013). A devastating Plinian eruption at Tungurahua volcano reveals formative occupation at 1100 cal BC in Central Ecuador. Radiocarbon, 55(3), 1199-1214.
Lesher, C. E., & Spera, F. J. (2015). Thermodynamic and transport properties of silicate melts and magma. In The encyclopedia of volcanoes (pp. 113-141). Academic Press.
MacDonald, G. A., & Katsura, T. (1964). Chemical composition of Hawaiian lavas. Journal of petrology, 5(1), 82-133.
Macías, J. L., Arce, J. L., Mora, J. C., Espíndola, J. M., Saucedo, R., & Manetti, P. (2003). A 550 year old Plinian eruption at El Chichón Volcano, Chiapas, Mexico: Explosive volcanism linked to reheating of the magma reservoir. Journal of Geophysical Research: Solid Earth, 108(B12).
Monsalve-Bustamante, M. L., Gómez, J., & Pinilla-Pachon, A. O. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. The Geology of Colombia, 4, 97-159.
Mueller, R. F., & Saxena, S. K. (2012). Chemical Petrology: with applications to the Terrestrial Planets and Meteorites. Springer Science & Business Media.
Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38(5), 757-775.
Pardo, N., Pulgarín, B., Betancourt, V. (2016). Avances Conocimiento Geológico sobre el Complejo Volcánico Doña Juana: Integración del Análisis de Litofacies, Estratigrafía, Geocronología y Petrología. Servicio Geológico Colombiano.
Pardo, N., Pulgarín, B., Betancourt, V., Lucchi, F., & Valencia, L. J. (2019). Facing geological mapping at low-latitude volcanoes: The Doña Juana Volcanic Complex study-case, SW-Colombia. Journal of Volcanology and Geothermal Research 385, 46-67.
Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary science letters, 19(2), 290-300.
Pearce, T. H., Gorman, B. E., & Birkett, T. C. (1977). The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36(1), 121-132.
Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1), 33-47.
Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins.
Perfit, M. R., Langmuir, C. H., Backisapa, M., Chappell, B., Johnson, R. W., Staudigel, H., & Taylor, S. R. (1987). Geochemistry and petrology of volcanic rocks from the Woodlark Basin: addressing questions of ridge subduction.
Ramos, V. A. (1999). Plate tectonic setting of the Andean Cordillera. Episodes Journal of International Geoscience, 22(3), 183-190.
Reyes Agustín, G. (2015). Estratigrafía, petrografía y geoquímica de las secuencias Valentín y Cuauhtémoc del Volcán Tláloc. Proyecto de Maestría en Ciencias. Universidad Michoacana de San Nicolás de Hidalgo, 75p., Morelia.
Robin, C., Samaniego, P., Le Pennec, J. L., Fornari, M., Mothes, P., & Van Der Plicht, J. (2010). New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bulletin of volcanology, 72(9), 1109-1129.
Roedder E. and Coombs D. S. (1967) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island. J. Petrol. 8(3), 4 17-45 1.
Roedder, E., & Yoder, H. S. (1979). Silicate liquid immiscibility in magmas. The Evolution of The Igneous Rocks Fiftieth Anniversary Perspectives, 15-59.
Roedder, E. (1992). Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20.
Rollinson, H., & Pease, V. (2021). Using geochemical data: to understand geological processes (2nd edition). Cambridge University Press.
Rutherford, M. J., & Hill, P. M. (1993). Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11), 19667-19685.
Samaniego, P., Barba, D., Robin, C., Fornari, M., & Bernard, B. (2012). Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research, 221, 33-51.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., ... & Joron, J. L. (2008). Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research, 177(1), 1-18.
Saucedo, R., Macías, J. L., Gavilanes, J. C., Arce, J. L., Komorowski, J. C., Gardner, J. E., & Valdez-Moreno, G. (2010). Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. Journal of Volcanology and Geothermal Research, 191(3-4), 149-166.
Servicio Geológico Colombiano. (2020). Átlas Geológico de Colombia 2020: Fallas geológicas [Mapa]. 1: 100.000 escala.
Shinohara, H. (1994). Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: Implications for chlorine and metal transport. Geochimica et Cosmochimica Acta, 58(23), 5215-5221.
Sigurdsson, H. (2015). Origin and transport of magma. In The encyclopaedia of volcanoes (pp. 33-34). Academic Press.
Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100-110.
Sisson, T. W., & Bronto, S. (1998). Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature, 391(6670), 883-886.
Smith, D. R., & Leeman, W. P. (1987). Petrogenesis of Mount St. Helens dacitic magmas. Journal of Geophysical Research: Solid Earth, 92(B10), 10313-10334.
Stern, R. J. (2002). Subduction zones. Reviews of geophysics, 40(4), 3-1.
Stern, C. R. (2004). Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile, 31(2), 161-206.
Stern, R. J. (2004). Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3-4), 275-292.
Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, 143, 1-14.
Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
Suñe-Puchol, I., Aguirre-Díaz, G. J., Dávila-Harris, P., Miggins, D. P., Pedrazzi, D., Costa, A., ... & Gutiérrez, E. (2019). The Ilopango caldera complex, El Salvador: Origin and early ignimbrite-forming eruptions of a graben/pull-apart caldera structure. Journal of Volcanology and Geothermal Research, 371, 1-19.
Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., ... & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813.
Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution.
Tepley III, F. J., De Silva, S., & Salas, G. (2013). Magma dynamics and petrological evolution leading to the VEI 5 2000 BP eruption of El Misti volcano, Southern Peru. Journal of Petrology, 54(10), 2033-2065.
Thorpe, R. S., Francis, P. W., & O'Callaghan, L. (1984). Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 310(1514), 675-692.
Turney, C. S., Blockley, S. P., Lowe, J. J., Wulf, S., Branch, N. P., Mastrolorenzo, G., ... & Pollard, A. M. (2008). Geochemical characterization of Quaternary tephras from the Campanian Province, Italy. Quaternary International, 178(1), 288-305.
Ueki, K., & Iwamori, H. (2017). Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis. Lithos, 290, 60-75.
Vermeesch, P. (2006). Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems, 7(6).
Vogt, K., Gerya, T. V., & Castro, A. (2012). Crustal growth at active continental margins: Numerical modeling. Physics of the Earth and Planetary Interiors, 192, 1-20.
Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23-29.
Weber, M. B., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1-4), 49-82.
Webster, J. D. (1997). Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61(5), 1017-1029.
Whittington, A. G., Hellwig, B. M., Behrens, H., Joachim, B., Stechern, A., & Vetere, F. (2009). The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bulletin of Volcanology, 71(2), 185-199.
Wilson, M. (1993). Magmatic differentiation. Journal of the Geological Society, 150(4), 611-624.
Wilson, M. (Ed.). (1989). Igneous petrogenesis. Dordrecht: Springer Netherlands.
Winter, J. D., (2014). An Introduction to Igneous and Metamorphic Petrology, Prentice-Hall Inc., Upper Saddle River, New Jersey.
Wood, D. A. (1980). The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and planetary science letters, 50(1), 11-30.
LeBas M. J., Le Maitre R. W., Streckheisen A., Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27:745-50.
Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429.
Miyashiro, A., & Shido, F. (1975). Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275(3), 265-277.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 41 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d2632372-fd2e-4185-b3db-29e9fc29bdde/download
https://repositorio.uniandes.edu.co/bitstreams/66b8c691-3dc1-4807-abd6-dfdd87917710/download
https://repositorio.uniandes.edu.co/bitstreams/8478d268-0218-4631-be32-cdd033d08b6f/download
https://repositorio.uniandes.edu.co/bitstreams/df7e94fd-f023-4fbd-81ba-f45367862341/download
https://repositorio.uniandes.edu.co/bitstreams/7ee6c7ea-9915-4e7a-8cb2-f6c54fde1e4f/download
https://repositorio.uniandes.edu.co/bitstreams/caa25e83-8812-4a00-a76b-40ad2ec4f5ad/download
https://repositorio.uniandes.edu.co/bitstreams/5a069008-ee05-4d5e-8701-483046f29f37/download
https://repositorio.uniandes.edu.co/bitstreams/72aa8676-38ac-46d3-92b4-ee4e37010e99/download
https://repositorio.uniandes.edu.co/bitstreams/8efad1f0-9741-4b68-8274-30ed396b15d3/download
bitstream.checksum.fl_str_mv 7d1811c458e7e238448e9d84d4bd599c
d5405065ae7a8c426953b258b3b357cf
c46c136633ed4f21d57ba5e3e8d6b733
5aa5c691a1ffe97abd12c2966efcb8d6
20dd0566f438c5641ec259e6dc37cd75
524b0310b7c2417c8640c707d19c82b7
fabaa517766599d405205925b2b8c234
5256b45b6f7634746b23ed487ac84769
29778c22b41a2458d3bd75c1d2abf7f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134053808177152
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pardo Villaveces, Nataliaa5c48d89-4a72-42a6-b19f-5691a5d8b242600Aldana Lozano, Ciro Alejandroc062d94f-5d57-48e8-9723-5a7cff424ae1600Sierra Rojas, Maria Isabel2023-01-27T19:34:25Z2023-01-27T19:34:25Z2022-12http://hdl.handle.net/1992/64295instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Las Ánimas es un complejo volcánico ubicado en los Andes del Norte de Colombia, sobre la Cordillera Central. En este estudio se presenta el análisis de roca total de elementos mayores y traza para 19 muestras de pómez provenientes de Las Ánimas, las cuales corresponden a andesitas y dacitas calcoalcalinas. Las variaciones de elementos mayores y traza indican el fraccionamiento de plagioclasa, anfíbol, piroxeno y óxidos Fe-Ti. Las tendencias químicas podrían indicar que la cristalización fraccionada no explica todos los datos y pudo haber influencia de otros procesos, tales como la contaminación cortical. También se analizaron 4 láminas delgadas donde se corroboró la cristalización de los minerales ya mencionados y se obtuvo soporte textural de las distintas fases. En particular, no se encontró evidencia textural de desequilibrio químico. No obstante, dada la ausencia de información isotópica y la limitada cantidad de muestras analizadas petrográficamente, se sugiere la elaboración de estudios que permitan complementar estos análisis.Las Ánimas is a volcanic complex located in the Northern Andes of Colombia, in the Central Cordillera. This study presents whole-rock analysis of major and trace elements from 19 pumice samples from Las Ánimas, which correspond to calc-alkaline andesites and dacites. Major and trace element variations indicate the fractionation of plagioclase, amphibole, pyroxene and Fe-Ti oxides. Chemical trends suggest crustal contamination during magmatic evolution. Four thin sections were also analysed to corroborate the crystallization of the aforementioned minerals. In addition, textural characteristics were studied where no evidence of disequilibrium was found. However, given the absence of isotopic information and the limited number of samples analysed petrographically, further studies are needed to complement these analyses.GeocientíficoPregrado41 páginasapplication/pdfspaUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasCaracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Animas, Nariño-Cauca, ColombiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPComplejo Volcánico Las ÁnimasCristalización fraccionadaDiferenciación magmáticaGeoquímica de roca totalPetrogénesisGeocienciasAnderson, A. T. (1976). Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1(1), 3-33.Arce, J. L., Walker, J., & Keppie, J. D. (2014). Petrology of two contrasting Mexican volcanoes, the Chiapanecan (El Chichón) and Central American (Tacaná) volcanic belts: the result of rift-versus subduction-related volcanism. International Geology Review, 56(4), 501-524.Arculus, R. J. (1981). Island-arc magma sources: a geochemical assessment of the roles of slab-derived components and crustal contamination. Geochemical Journal, 15(3), 109-133.Arculus, R. J. (1987). The significance of source versus process in the tectonic controls of magma genesis. Journal of Volcanology and Geothermal Research, 32(1-3), 1-12.Arculus, R. J. (1994). Aspects of magma genesis in arcs. Lithos, 33(1-3), 189-208.Bowen, N. L. (1928), The Evolution of Igneous Rocks. Princeton, New Jersey USA.Capra, L., Carreras, L. M., Arce, J. L., & Macías, J. L. (2006). The Lower Toluca Pumice: A ca. 21,700 yrB. P. Plinian eruption ofNevado de Toluca volcano, México. Neogene-Quaternary continental margin volcanism: A perspective from Mexico, 402, 155.Castro, A., Gerya, T., García-Casco, A., Fernández, C., Díaz-Alvarado, J., Moreno-Ventas, I., & Löw, I. (2010). Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. Journal of Petrology, 51(6), 1267-1295.Cerný, P. (1991). Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?. Precambrian Research, 51(1-4), 429-468.Chen, Z., Zeng, Z., Yin, X., Wang, X., Zhang, Y., Chen, S., & Li, X. (2018). Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: Constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes. Geological Journal, 54(1), 316-332.Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. A. (2016). Subduction system and flat slab beneath the E astern C ordillera of C olombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27.Conder, J. A., Wiens, D. A., & Morris, J. (2002). On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophysical Research Letters, 29(15), 17-1.Cribb, J. W., & Barton, M. (1996). Geochemical effects of decoupled fractional crystallization and crustal assimilation. Lithos, 37(4), 293-307.De Silva, S. L., Harmon, R. S., & Rapela, C. W. (1991). Styles of zoning in central Andean ignimbrites; insights into magma chamber processes. Andean magmatism and its tectonic setting: Geological Society of America Special Paper, 265, 217-232.Defant, M. J., Maury, R. C., Ripley, E. M., Feigenson, M. D., & Jacques, D. (1991). An example of island-arc petrogenesis: geochemistry and petrology of the southern Luzon arc, Philippines. Journal of Petrology, 32(3), 455-500.Defant, M. J., & Drummond, M. S. (1993). Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6), 547-550.Fernandez S, S., & Hernandez P, A., 1991. Cálculos y diagramas geoquímicos. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 340.Floyd, P. A., & Winchester, J. A. (1975). Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, 27(2), 211-218.Freymueller, J. T., Kellogg, J. N., & Vega, V. (1993). Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12), 21853-21863.Gill, J. (1982). Orogenic andesites and plate tectonics. Berlín: Springer-Verlag.Gorshkov, G. (2012). Volcanism and the upper mantle: investigations in the Kurile Island Arc. Springer Science & Business Media.Green, T. H., Island arc and continent-building cients for trace elements in high silica rhyolites, magmatism--A review of petrogenetic models based on Geochim. Cosmochim. Acta, 47, 11-30, 1983. experimental petrology and geochemistry, TeetonG- Matsuhisa, Y. and H. Kurassawa, Oxygen and strontium physics, 63, 367-383, 1980.Greig, J.W., (1927). Immiscibility in silicate melts. Am. J. Sci., 13, 133 - 154.Grove, T. L., & Kinzler, R. J. (1986). Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences, 14, 417.Grove, T., Parman, S., Bowring, S., Price, R., & Baker, M. (2002). The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142(4), 375-396.Grove, T. L., & Till, C. B. (2015). Melting the Earth's Upper Mantle. In The Encyclopedia of Volcanoes (pp. 35-47). Academic Press.Hall, M. L., & Wood, C. A. (1985). Volcano-tectonic segmentation of the northern Andes. Geology, 13(3), 203-207.Harker, A. (1909) The natural history of igneous rocks. Macmillan, New York. Iwamori, H. (1998). Transportation of H2O and melting in subduction zones. Earth and Planetary Science Letters, 160(1-2), 65-80.Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2), 117-132.Kelemen, P. B., Shimizu, N., & Dunn, T. (1993). Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120(3-4), 111-134.Kelemen, P., Hanghoj, K. & Greene, A. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust (Chapter 3.18). En Holland, H. & Turekian, K. (Eds.), Treatise on Geochemistry, pp. 593- 569, vol. 3 The Crust. Oxford: Elsevier-Pergamon.LaFemina, P. C. (2015). Plate tectonics and volcanism. In The encyclopedia of volcanoes (pp. 65-92). Academic Press.Le Pennec, J. L., De Saulieu, G., Samaniego, P., Jaya, D., & Gailler, L. (2013). A devastating Plinian eruption at Tungurahua volcano reveals formative occupation at 1100 cal BC in Central Ecuador. Radiocarbon, 55(3), 1199-1214.Lesher, C. E., & Spera, F. J. (2015). Thermodynamic and transport properties of silicate melts and magma. In The encyclopedia of volcanoes (pp. 113-141). Academic Press.MacDonald, G. A., & Katsura, T. (1964). Chemical composition of Hawaiian lavas. Journal of petrology, 5(1), 82-133.Macías, J. L., Arce, J. L., Mora, J. C., Espíndola, J. M., Saucedo, R., & Manetti, P. (2003). A 550 year old Plinian eruption at El Chichón Volcano, Chiapas, Mexico: Explosive volcanism linked to reheating of the magma reservoir. Journal of Geophysical Research: Solid Earth, 108(B12).Monsalve-Bustamante, M. L., Gómez, J., & Pinilla-Pachon, A. O. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. The Geology of Colombia, 4, 97-159.Mueller, R. F., & Saxena, S. K. (2012). Chemical Petrology: with applications to the Terrestrial Planets and Meteorites. Springer Science & Business Media.Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38(5), 757-775.Pardo, N., Pulgarín, B., Betancourt, V. (2016). Avances Conocimiento Geológico sobre el Complejo Volcánico Doña Juana: Integración del Análisis de Litofacies, Estratigrafía, Geocronología y Petrología. Servicio Geológico Colombiano.Pardo, N., Pulgarín, B., Betancourt, V., Lucchi, F., & Valencia, L. J. (2019). Facing geological mapping at low-latitude volcanoes: The Doña Juana Volcanic Complex study-case, SW-Colombia. Journal of Volcanology and Geothermal Research 385, 46-67.Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary science letters, 19(2), 290-300.Pearce, T. H., Gorman, B. E., & Birkett, T. C. (1977). The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36(1), 121-132.Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1), 33-47.Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins.Perfit, M. R., Langmuir, C. H., Backisapa, M., Chappell, B., Johnson, R. W., Staudigel, H., & Taylor, S. R. (1987). Geochemistry and petrology of volcanic rocks from the Woodlark Basin: addressing questions of ridge subduction.Ramos, V. A. (1999). Plate tectonic setting of the Andean Cordillera. Episodes Journal of International Geoscience, 22(3), 183-190.Reyes Agustín, G. (2015). Estratigrafía, petrografía y geoquímica de las secuencias Valentín y Cuauhtémoc del Volcán Tláloc. Proyecto de Maestría en Ciencias. Universidad Michoacana de San Nicolás de Hidalgo, 75p., Morelia.Robin, C., Samaniego, P., Le Pennec, J. L., Fornari, M., Mothes, P., & Van Der Plicht, J. (2010). New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bulletin of volcanology, 72(9), 1109-1129.Roedder E. and Coombs D. S. (1967) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island. J. Petrol. 8(3), 4 17-45 1.Roedder, E., & Yoder, H. S. (1979). Silicate liquid immiscibility in magmas. The Evolution of The Igneous Rocks Fiftieth Anniversary Perspectives, 15-59.Roedder, E. (1992). Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20.Rollinson, H., & Pease, V. (2021). Using geochemical data: to understand geological processes (2nd edition). Cambridge University Press.Rutherford, M. J., & Hill, P. M. (1993). Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11), 19667-19685.Samaniego, P., Barba, D., Robin, C., Fornari, M., & Bernard, B. (2012). Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research, 221, 33-51.Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., ... & Joron, J. L. (2008). Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research, 177(1), 1-18.Saucedo, R., Macías, J. L., Gavilanes, J. C., Arce, J. L., Komorowski, J. C., Gardner, J. E., & Valdez-Moreno, G. (2010). Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. Journal of Volcanology and Geothermal Research, 191(3-4), 149-166.Servicio Geológico Colombiano. (2020). Átlas Geológico de Colombia 2020: Fallas geológicas [Mapa]. 1: 100.000 escala.Shinohara, H. (1994). Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: Implications for chlorine and metal transport. Geochimica et Cosmochimica Acta, 58(23), 5215-5221.Sigurdsson, H. (2015). Origin and transport of magma. In The encyclopaedia of volcanoes (pp. 33-34). Academic Press.Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100-110.Sisson, T. W., & Bronto, S. (1998). Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature, 391(6670), 883-886.Smith, D. R., & Leeman, W. P. (1987). Petrogenesis of Mount St. Helens dacitic magmas. Journal of Geophysical Research: Solid Earth, 92(B10), 10313-10334.Stern, R. J. (2002). Subduction zones. Reviews of geophysics, 40(4), 3-1.Stern, C. R. (2004). Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile, 31(2), 161-206.Stern, R. J. (2004). Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3-4), 275-292.Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, 143, 1-14.Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.Suñe-Puchol, I., Aguirre-Díaz, G. J., Dávila-Harris, P., Miggins, D. P., Pedrazzi, D., Costa, A., ... & Gutiérrez, E. (2019). The Ilopango caldera complex, El Salvador: Origin and early ignimbrite-forming eruptions of a graben/pull-apart caldera structure. Journal of Volcanology and Geothermal Research, 371, 1-19.Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., ... & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813.Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution.Tepley III, F. J., De Silva, S., & Salas, G. (2013). Magma dynamics and petrological evolution leading to the VEI 5 2000 BP eruption of El Misti volcano, Southern Peru. Journal of Petrology, 54(10), 2033-2065.Thorpe, R. S., Francis, P. W., & O'Callaghan, L. (1984). Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 310(1514), 675-692.Turney, C. S., Blockley, S. P., Lowe, J. J., Wulf, S., Branch, N. P., Mastrolorenzo, G., ... & Pollard, A. M. (2008). Geochemical characterization of Quaternary tephras from the Campanian Province, Italy. Quaternary International, 178(1), 288-305.Ueki, K., & Iwamori, H. (2017). Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis. Lithos, 290, 60-75.Vermeesch, P. (2006). Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems, 7(6).Vogt, K., Gerya, T. V., & Castro, A. (2012). Crustal growth at active continental margins: Numerical modeling. Physics of the Earth and Planetary Interiors, 192, 1-20.Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23-29.Weber, M. B., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1-4), 49-82.Webster, J. D. (1997). Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61(5), 1017-1029.Whittington, A. G., Hellwig, B. M., Behrens, H., Joachim, B., Stechern, A., & Vetere, F. (2009). The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bulletin of Volcanology, 71(2), 185-199.Wilson, M. (1993). Magmatic differentiation. Journal of the Geological Society, 150(4), 611-624.Wilson, M. (Ed.). (1989). Igneous petrogenesis. Dordrecht: Springer Netherlands.Winter, J. D., (2014). An Introduction to Igneous and Metamorphic Petrology, Prentice-Hall Inc., Upper Saddle River, New Jersey.Wood, D. A. (1980). The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and planetary science letters, 50(1), 11-30.LeBas M. J., Le Maitre R. W., Streckheisen A., Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27:745-50.Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429.Miyashiro, A., & Shido, F. (1975). Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275(3), 265-277.201911277PublicationTEXTCiro_Aldana-Proyecto_Grado.pdf.txtCiro_Aldana-Proyecto_Grado.pdf.txtExtracted texttext/plain79308https://repositorio.uniandes.edu.co/bitstreams/d2632372-fd2e-4185-b3db-29e9fc29bdde/download7d1811c458e7e238448e9d84d4bd599cMD56Autorización_Tesis_Biblioteca.pdf.txtAutorización_Tesis_Biblioteca.pdf.txtExtracted texttext/plain1323https://repositorio.uniandes.edu.co/bitstreams/66b8c691-3dc1-4807-abd6-dfdd87917710/downloadd5405065ae7a8c426953b258b3b357cfMD58Anexo_1.xlsx.txtAnexo_1.xlsx.txtExtracted texttext/plain16916https://repositorio.uniandes.edu.co/bitstreams/8478d268-0218-4631-be32-cdd033d08b6f/downloadc46c136633ed4f21d57ba5e3e8d6b733MD510LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/df7e94fd-f023-4fbd-81ba-f45367862341/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALCiro_Aldana-Proyecto_Grado.pdfCiro_Aldana-Proyecto_Grado.pdfapplication/pdf3398404https://repositorio.uniandes.edu.co/bitstreams/7ee6c7ea-9915-4e7a-8cb2-f6c54fde1e4f/download20dd0566f438c5641ec259e6dc37cd75MD52Autorización_Tesis_Biblioteca.pdfAutorización_Tesis_Biblioteca.pdfHIDEapplication/pdf204652https://repositorio.uniandes.edu.co/bitstreams/caa25e83-8812-4a00-a76b-40ad2ec4f5ad/download524b0310b7c2417c8640c707d19c82b7MD54Anexo_1.xlsxAnexo_1.xlsxHIDEapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet32401https://repositorio.uniandes.edu.co/bitstreams/5a069008-ee05-4d5e-8701-483046f29f37/downloadfabaa517766599d405205925b2b8c234MD55THUMBNAILCiro_Aldana-Proyecto_Grado.pdf.jpgCiro_Aldana-Proyecto_Grado.pdf.jpgIM Thumbnailimage/jpeg9720https://repositorio.uniandes.edu.co/bitstreams/72aa8676-38ac-46d3-92b4-ee4e37010e99/download5256b45b6f7634746b23ed487ac84769MD57Autorización_Tesis_Biblioteca.pdf.jpgAutorización_Tesis_Biblioteca.pdf.jpgIM Thumbnailimage/jpeg16349https://repositorio.uniandes.edu.co/bitstreams/8efad1f0-9741-4b68-8274-30ed396b15d3/download29778c22b41a2458d3bd75c1d2abf7f8MD591992/64295oai:repositorio.uniandes.edu.co:1992/642952023-10-10 19:26:59.479https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==