High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction
High entropy oxides (HEOs) represent a paradigm changing field of research that has awakened a lot of attention from physicists, material scientists and chemists. They are a new class of ceramic material that includes 5 or more transition metals (TMs) in its crystal lattice. Besides from the wide ra...
- Autores:
-
Eugenio Gómez, Carlos Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75401
- Acceso en línea:
- https://hdl.handle.net/1992/75401
- Palabra clave:
- High-entropy
Spinel
Magnetic
Neutron diffraction
Física
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_4cad7f5f80b92b39a843e2d5624c0d01 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75401 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
title |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
spellingShingle |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction High-entropy Spinel Magnetic Neutron diffraction Física |
title_short |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
title_full |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
title_fullStr |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
title_full_unstemmed |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
title_sort |
High-entropy spinel oxides: Structural and magnetic characterization through neutron diffraction |
dc.creator.fl_str_mv |
Eugenio Gómez, Carlos Felipe |
dc.contributor.advisor.none.fl_str_mv |
Lefmann, Kim Ramírez Rojas, Juan Gabriel |
dc.contributor.author.none.fl_str_mv |
Eugenio Gómez, Carlos Felipe |
dc.contributor.jury.none.fl_str_mv |
Bindslev Hansen, Jørn |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada |
dc.subject.keyword.none.fl_str_mv |
High-entropy Spinel Magnetic Neutron diffraction |
topic |
High-entropy Spinel Magnetic Neutron diffraction Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
High entropy oxides (HEOs) represent a paradigm changing field of research that has awakened a lot of attention from physicists, material scientists and chemists. They are a new class of ceramic material that includes 5 or more transition metals (TMs) in its crystal lattice. Besides from the wide range of applications in biomedicine, energy and data storage due to their electrical, catalytic and magnetic properties; spinel HEOs are a way to question what properties emerge from extreme configurational disorder in contrast to common iron- or chromium-based spinels. This project aims to unveil both structural and magnetic properties of the spinel HEOs (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4, (Co0.33Ni0.33Cu0.33 (Mn0.5Fe0.5)2O4, and (Co0.33Ni0.33Cu0.33)(Cr0.33Mn0.33Fe0.33)2O4 in order to investigate if they differ from a simple average of the common TM-based spinel. To do this, single-phase spinel HEOs were synthe- sized through a sol-gel method at the Center for High Entropy Alloy Catalysis (CHEAC) at the University of Copenhagen (UCPH), Denmark. Powder X-ray diffraction (PXRD) was performed on all three HEOs at UCPH, Denmark; to check the quality of the samples. Moreover, isothermal curves of magnetization as a function of applied magnetic field were measured at T = 2 and 300 K, as well as field cooled (FC) M-T susceptibility measurements for T < 300 K. To find the paramagnetic transition temperature Tc on each HEO, FC magnetic susceptibility was measured up to 550 K at the University of California San Diego (UCSD), United States. Ultimately, to fully characterize the magnetic structure of the HEOs, temperature dependent powder neutron diffraction (PND) was performed using the High-Resolution Powder Diffractometer for Thermal Neutrons (HRPT) at Paul Scherrer Institute (PSI), Switzerland. From the above experimental techniques, single phase HEOs with cubic spinel structure (space group Fd¯3m) were identified with no detectable impuri- ties. Hysteresis loops at low temperatures and characteristic soft magnetic behaviour at room temperature was observed. Ferrimagnetic ordering in every HEO was confirmed through low temperature magnetometry and PND with their corresponding transition temperature. Finally, there were several effects of the high-entropy nature on the HEOs behaviour such as spin glass states at room temperature and ferrimagnetic ordering. The former property seems to be a direct consequence of both high configurational entropy and the symmetries of the spinel structure. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-01-26 |
dc.date.accessioned.none.fl_str_mv |
2025-01-14T16:14:32Z |
dc.date.available.none.fl_str_mv |
2025-01-14T16:14:32Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75401 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75401 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
S. S. Aamlid, M. Oudah, J. Rottler, and A. M. Hallas. Understanding the Role of Entropy in High Entropy Oxides. Journal of the American Chemical Society, 2022. J. Akimitsu and Y. Ito. Magnetic form factor of cu2+ in k2cuf4. Journal of the Physical Society of Japan, 40(6):1621–, 1976. J. Als-Nielsen and D. McMorrow. Kinematical scattering I: non-crystalline materials, chapter 4, pages 113–146. John Wiley Sons, Ltd, 2011. D. Azuma. 4 - magnetic materials. In K. Suganuma, editor, Wide Bandgap Power Semiconductor Packaging, Woodhead Publishing Series in Electronic and Optical Materials, pages 97–107. Woodhead Publishing, 2018. B. Banerjee. On a generalised approach to first and second order magnetic transitions. Physics Letters, 12(1):16–17, Sept. 1964. R. Banerjee, M. Banerjee, A. K. Majumdar, A. Mookerjee, B. Sanyal, J. Hellsvik, O. Eriksson, and A. K. Nigam. Fe3.3ni83.2mo13.5: a likely candidate to show spin-glass behaviour at low temperatures. Journal of Physics: Condensed Matter, 23(10):106002, Feb. 2011. K. Biswas, N. Prakash, G. Tanmoy, M. Rajiv, and S. Mishra. High Entropy Materials-Processing, Properties, and Applications. 2022. L. Blaney. Magnetite (fe3o4)properties, synthesis and applications. The Lehigh Review, 15:33–81, 01 2007. A. T. Boothroyd. Principles of neutron scattering from condensed matter. Oxford scholarship online. Oxford University Press, Oxford, first edition. edition, 2020. K. Bouferrache, Z. Charifi, H. Baaziz, A. M. Alsaad, and A. Telfah. Electronic structure, magnetic and optic properties of spinel compound nife2o4. Semiconductor Science and Technology, 35(9):095013, jul 2020. J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J.-P. Maria, and P. E. Hopkins. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Advanced Materials, 30(51):1805004, 2018. D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe. Colossal dielectric constant in high entropy oxides. physica status solidi (RRL) – Rapid Research Letters, 10(4):328–333, 2016. D. Bérardan, S. Franger, A. K. Meena, and N. Dragoe. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A, 4:9536–9541, 2016. B. Cantor, I. T. Chang, P. Knight, and A. J. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 375-377(1-2 SPEC. ISS.):213–218, 2004. E. S. Chaos. Synthesis and characterization of high entropy spinel oxides, 2023. S.-J. Cho, M.-J. Uddin, and P. Alaboina. Chapter three - review of nanotechnology for cathode materials in batteries. In L. M. Rodriguez-Martinez and N. Omar, editors, Emerging Nanotechnologies in Rechargeable Energy Storage Systems, Micro and Nano Technologies, pages 83–129. Elsevier, Boston, 2017. J. Cieslak, M. Reissner, K. Berent, J. Dabrowa, M. Stygar, M. Mozdzierz, and M. Zajusz. Magnetic properties and ionic distribution in high entropy spinels studied by mössbauer and ab initio methods. Acta Materialia, 206:116600, 2021. B. Cullity. Elements of X-ray Diffraction. Addison-Wesley series in metallurgy and materials. Addison-Wesley Publishing Company, 1978. S. Dai, M. Li, X. Wang, H. Zhu, Y. Zhao, and Z. Wu. Fabrication and magnetic property of novel (co,zn,fe,mn,ni)3o4 high-entropy spinel oxide. Journal of Magnetism and Magnetic Materials, 536:168123, 2021. J. R. Deschamps and J. L. Flippen-Anderson. Crystallography. In R. A. Meyers, editor, Encyclopedia of Physical Science and Technology (Third Edition), pages 121–153. Academic Press, New York, third edition edition, 2002. A.-J. Dianoux and G. Lander, editors. Neutron Data Booklet. Old City Publishing, Philadelphia, PA, 2 edition, 2003. J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin. Synthesis and microstructure of the (co,cr,fe,mn,ni)3o4 high entropy oxide characterized by spinel structure. Materials letters, 216:32–36, 2018. A. Elfalaky and S. Soliman. Theoretical investigation of mnfe2o4. Journal of Alloys and Compounds, 580:401–406, 2013. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201):1153–1158, 2014. A. Hakeem, T. Alshahrani, G. Muhammad, M. Alhossainy, A. Laref, A. R. Khan, I. Ali, H. M. Tahir Farid, T. Ghrib, S. R. Ejaz, and R. Y. Khosa. Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. Journal of Materials Research and Technology, 11:158–169, Mar. 2021. G. H. Johnstone, M. U. González-Rivas, K. M. Taddei, R. Sutarto, G. A. Sawatzky, R. J. Green, M. Oudah, and A. M. Hallas. Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide. Journal of the American Chemical Society, 144(45):20590–20600, 2022. M. C. Kemei, S. L. Moffitt, D. P. Shoemaker, and R. Seshadri. Evolution of magnetic properties in the normal spinel solid solution mg1−xcuxcr2o4. Journal of Physics: Condensed Matter, 24(4):046003, Jan. 2012. A. Kirsch, E. D. Bøjesen, N. Lefeld, R. Larsen, J. K. Mathiesen, S. L. Skjærvø, R. K. Pittkowski, D. Sheptyakov, and K. M. Jensen. High-entropy oxides in the mullite-type structure. Chemistry of Materials, 35(20):8664–8674, Oct. 2023. L. B. Kong, L. Liu, Z. Yang, S. Li, T. Zhang, and C. Wang. 15 - theory of ferrimagnetism and ferrimagnetic metal oxides. In B. D. Stojanovic, editor, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Metal Oxides, pages 287–311. Elsevier, 2018. R. Kotnala and J. Shah. Chapter 4 - ferrite materials: Nano to spintronics regime. volume 23 of Handbook of Magnetic Materials, pages 291–379. Elsevier, 2015. A. Kyriacou. Simultaneous X-ray and Neutron Diffraction Rietveld Refinements of Nanophase Fe Substituted Hydroxyapatite. PhD thesis, Florida Atlantic University, 2012. S. Küçükdermenci, D. Kutluay, and I. Avgin. Synthesis of a fe3o4/paa-based magnetic fluid for faraday-rotation measurements. Materiali in Tehnologije, 47:71–78, 08 2012. K. Lefmann. Neutron scattering: Theory, instrumentation, and simulation. unpublished, 2023. Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama. Correlation between particle size/domain structure and magnetic properties of highly crystalline fe3o4 nanoparticles. Scientific Reports, 7(1), Aug. 2017. J. Ma, V. O. Garlea, A. Rondinone, A. A. Aczel, S. Calder, C. dela Cruz, R. Sinclair, W. Tian, S. Chi, A. Kiswandhi, J. S. Brooks, H. D. Zhou, and M. Matsuda. Magnetic and structural phase transitions in the spinel compound fe1+xcr2−xO4. Phys. Rev. B, 89:134106, Apr 2014. A. Mao, F. Quan, H. Z. Xiang, Z. G. Zhang, K. Kuramoto, and A. L. Xia. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 1194:11–18, 2019. A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia. A new class of spinel high-entropy oxides with controllable magnetic properties. Journal of Magnetism and Magnetic Materials, 497:165884, 2020. R. Moon, W. Koehler, and J. W. Cable. Magnetic form factor of 3d and 4d paramagnetic metals. In Proceedings of the conference on neutron scattering, volume 2, pages 577–592, Oak Ridge, Tennessee, June 1976. Oak Ridge National Lab. and U.S. Energy Research and Development Administration, Oak Ridge National Laboratory. O. Mounkachi, R. Lamouri, E. Salmani, M. Hamedoun, A. Benyoussef, and H. Ez-Zahraouy. Origin of the magnetic properties of mnfe2o4 spinel ferrite: Ab initio and monte carlo simulation. Journal of Magnetism and Magnetic Materials, 533:168016, 2021. N. Mufti, A. A. Nugroho, G. R. Blake, and T. T. M. Palstra. Magnetodielectric coupling in frustrated spin systems: the spinels mcr2o4(m = mn, co and ni). Journal of Physics: Condensed Matter, 22(7):075902, Feb. 2010. O. Muktaridha, A. Adlim, S. Suhendrayatna, and I. Ismail. Progress of 3d metal-doped zinc oxide nanoparticles and the photocatalytic properties. Arabian Journal of Chemistry, 14:103175, 04 2021. S. P. Murarka. Metallization : theory and practice for VLSI and ULSI. page 250, 1993. B. Musicó, Q. Wright, T. Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens. Tunable magnetic ordering through cation selection in entropic spinel oxides. Physical Review Materials, 3(10):1–10, 2019. R. Nathans and A. Paoletti. Magnetic form factor of cobalt. Phys. Rev. Lett., 2:254–256, Mar 1959. None Available. Materials data on fe3o4 by materials project, 2020. I. Panneer Muthuselvam and R. Bhowmik. Mechanical alloyed ho3+ doping in cofe2o4 spinel ferrite and understanding of magnetic nanodomains. Journal of Magnetism and Magnetic Materials, 322(7):767–776, 2010. T. Parida, A. Karati, K. Guruvidyathri, B. S. Murty, and G. Markandeyulu. Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure. Scripta Materialia, 178:513–517, 2020. W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. A. Tutmaher, J. C. Leiner, M. D. Lumsden, C. M. Lavelle, X. P. Wang, C. Hoffmann, M. A. Siegler, N. Haldolaarachchige, D. P. Young, and T. M. McQueen. On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals. Sci. Rep., 6(1):20860, Feb. 2016. A. C. Rodríguez. Tuning the magnetic properties of multiferroic BiFeO3: From bulk to nanoscale. PhD thesis, Universidad de los Andes, 2022. C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Cur- tarolo, and J. P. Maria. Entropy-stabilized oxides. Nature Communications, 6, 2015. W. Roth. The magnetic structure of co3o4. The Journal of physics and chemistry of solids, 25(1):1–10, 1964. A. Sarkar, B. Eggert, R. Witte, J. Lill, L. Velasco, Q. Wang, J. Sonar, K. Ollefs, S. S. Bhattacharya, R. A. Brand, H. Wende, F. M. de Groot, O. Clemens, H. Hahn, and R. Kruk. Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (co0.2cr0.2fe0.2mn0.2ni0.2)3o4: Unraveling the suppression of configuration entropy in high entropy oxides. Acta materialia, 226:1–, 2022. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, and B. Breitung. High entropy oxides for reversible energy storage. Nature Communications, 9(1), 2018. O. Senkov, G. Wilks, D. Miracle, C. Chuang, and P. Liaw. Refractory high-entropy alloys. Intermetallics, 18(9):1758–1765, 2010. S. H. Simon. The Oxford solid state basics. Oxford University Press, Oxford, 2013. K. Singh, A. Maignan, C. Simon, and C. Martin. FeCr2O4 and CoCr2O4 spinels: Multiferroicity in the collinear magnetic state? Applied Physics Letters, 99(17):172903, 10 2011. R. Singh Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, and V. Enev. Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered co1−xznxfe2o4 (x = 0.0, 0.5) spinel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 447:48–57, Feb. 2018. K. Sneppen and J. O. Haerter. Complex physics (lecture notes). unpublished, 2023. T. F. Soules and J. W. Richardson. Electron delocalization and the neutron magnetic form factor of Mn+2 and Ni+2 antiferromagnetic salts. Phys. Rev. Lett., 25:110–114, Jul 1970. B. Stephen. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics. OUP Oxford, 2001. Y. Sun and S. Dai. High-entropy materials for catalysis: A new frontier. Science Advances, 7(20):eabg1600, 2021. D. Thapa, N. Kulkarni, S. N. Mishra, P. L. Paulose, and P. Ayyub. Enhanced magnetization in cubic ferrimagnetic cufe2o4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. Journal of Physics D: Applied Physics, 43(19):195004, apr 2010. R. Witte, A. Sarkar, R. Kruk, B. Eggert, R. A. Brand, H. Wende, and H. Hahn. High- entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater., 3:034406, Mar 2019. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5):299–303, 2004. J. M. Yeomans. Statistical mechanics of phase transitions. Clarendon Press, Oxford, England, May 1992. Y. Yin, F. Shi, G.-Q. Liu, X. Tan, J. Jiang, A. Tiwari, and B. Li. Spin-glass behavior and magnetocaloric properties of high-entropy perovskite oxides. Applied Physics Letters, 120(8):082404, 02 2022. C. J. N. B. Yvonne M. Mos, Arnold C. Vermeulen and J. Weijma. X-ray diffraction of iron containing samples: The importance of a suitable configuration. Geomicrobiology Journal, 35(6):511–517, 2018. J. Zhang, J. Yan, S. Calder, Q. Zheng, M. A. McGuire, D. L. Abernathy, Y. Ren, S. H. Lapidus, K. Page, H. Zheng, J. W. Freeland, J. D. Budai, and R. P. Hermann. Long- Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. Chemistry of Materials, 31(10):3705–3711, 2019. Y. Zhang. High-Entropy Materials: A Brief Introduction. Springer Singapore Pte. Limited, Singapore, 2019. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
57 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/75559131-ff3b-4f6c-b57c-fd5e8019f457/download https://repositorio.uniandes.edu.co/bitstreams/0627d28b-25ea-4349-90da-925edc985f91/download https://repositorio.uniandes.edu.co/bitstreams/5c8317e8-d81b-4082-bfaf-56b697e4db6f/download https://repositorio.uniandes.edu.co/bitstreams/7108b93d-c9a5-4cce-942b-b1a948818844/download https://repositorio.uniandes.edu.co/bitstreams/ffa84933-cb49-4f0a-9bf1-0de38648ab46/download https://repositorio.uniandes.edu.co/bitstreams/6ecde698-1b6b-4bd1-96b7-7b544c581684/download https://repositorio.uniandes.edu.co/bitstreams/a78c414f-511b-4003-9d4a-20d4305899a5/download https://repositorio.uniandes.edu.co/bitstreams/71774958-7d47-49a5-a8c0-428f1de002d0/download |
bitstream.checksum.fl_str_mv |
7ddb119557d0f8c8560b2afada8da299 df5cf8a016ff53de442e23e1d73c9824 0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 6d22b5dab148292960be3909a3a103b4 4327de522c19d452585fb0a6cd8aad5c 27471e3d87feff5f3004c1ea0fa0466b c9a70f1551d88b7dd9ffdf67bae91100 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927706204241920 |
spelling |
Lefmann, KimRamírez Rojas, Juan Gabrielvirtual::22036-1Eugenio Gómez, Carlos FelipeBindslev Hansen, JørnFacultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada2025-01-14T16:14:32Z2025-01-14T16:14:32Z2024-01-26https://hdl.handle.net/1992/75401instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/High entropy oxides (HEOs) represent a paradigm changing field of research that has awakened a lot of attention from physicists, material scientists and chemists. They are a new class of ceramic material that includes 5 or more transition metals (TMs) in its crystal lattice. Besides from the wide range of applications in biomedicine, energy and data storage due to their electrical, catalytic and magnetic properties; spinel HEOs are a way to question what properties emerge from extreme configurational disorder in contrast to common iron- or chromium-based spinels. This project aims to unveil both structural and magnetic properties of the spinel HEOs (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4, (Co0.33Ni0.33Cu0.33 (Mn0.5Fe0.5)2O4, and (Co0.33Ni0.33Cu0.33)(Cr0.33Mn0.33Fe0.33)2O4 in order to investigate if they differ from a simple average of the common TM-based spinel. To do this, single-phase spinel HEOs were synthe- sized through a sol-gel method at the Center for High Entropy Alloy Catalysis (CHEAC) at the University of Copenhagen (UCPH), Denmark. Powder X-ray diffraction (PXRD) was performed on all three HEOs at UCPH, Denmark; to check the quality of the samples. Moreover, isothermal curves of magnetization as a function of applied magnetic field were measured at T = 2 and 300 K, as well as field cooled (FC) M-T susceptibility measurements for T < 300 K. To find the paramagnetic transition temperature Tc on each HEO, FC magnetic susceptibility was measured up to 550 K at the University of California San Diego (UCSD), United States. Ultimately, to fully characterize the magnetic structure of the HEOs, temperature dependent powder neutron diffraction (PND) was performed using the High-Resolution Powder Diffractometer for Thermal Neutrons (HRPT) at Paul Scherrer Institute (PSI), Switzerland. From the above experimental techniques, single phase HEOs with cubic spinel structure (space group Fd¯3m) were identified with no detectable impuri- ties. Hysteresis loops at low temperatures and characteristic soft magnetic behaviour at room temperature was observed. Ferrimagnetic ordering in every HEO was confirmed through low temperature magnetometry and PND with their corresponding transition temperature. Finally, there were several effects of the high-entropy nature on the HEOs behaviour such as spin glass states at room temperature and ferrimagnetic ordering. The former property seems to be a direct consequence of both high configurational entropy and the symmetries of the spinel structure.University of Copenhagen, Niels Bohr Institute.University of California San Diego, Department of PhysicsPaul Scherrer Institute, Laboratory for Neutron Scattering and ImagingPregrado57 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2High-entropy spinel oxides: Structural and magnetic characterization through neutron diffractionTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPHigh-entropySpinelMagneticNeutron diffractionFísicaS. S. Aamlid, M. Oudah, J. Rottler, and A. M. Hallas. Understanding the Role of Entropy in High Entropy Oxides. Journal of the American Chemical Society, 2022.J. Akimitsu and Y. Ito. Magnetic form factor of cu2+ in k2cuf4. Journal of the Physical Society of Japan, 40(6):1621–, 1976.J. Als-Nielsen and D. McMorrow. Kinematical scattering I: non-crystalline materials, chapter 4, pages 113–146. John Wiley Sons, Ltd, 2011.D. Azuma. 4 - magnetic materials. In K. Suganuma, editor, Wide Bandgap Power Semiconductor Packaging, Woodhead Publishing Series in Electronic and Optical Materials, pages 97–107. Woodhead Publishing, 2018.B. Banerjee. On a generalised approach to first and second order magnetic transitions. Physics Letters, 12(1):16–17, Sept. 1964.R. Banerjee, M. Banerjee, A. K. Majumdar, A. Mookerjee, B. Sanyal, J. Hellsvik, O. Eriksson, and A. K. Nigam. Fe3.3ni83.2mo13.5: a likely candidate to show spin-glass behaviour at low temperatures. Journal of Physics: Condensed Matter, 23(10):106002, Feb. 2011.K. Biswas, N. Prakash, G. Tanmoy, M. Rajiv, and S. Mishra. High Entropy Materials-Processing, Properties, and Applications. 2022.L. Blaney. Magnetite (fe3o4)properties, synthesis and applications. The Lehigh Review, 15:33–81, 01 2007.A. T. Boothroyd. Principles of neutron scattering from condensed matter. Oxford scholarship online. Oxford University Press, Oxford, first edition. edition, 2020.K. Bouferrache, Z. Charifi, H. Baaziz, A. M. Alsaad, and A. Telfah. Electronic structure, magnetic and optic properties of spinel compound nife2o4. Semiconductor Science and Technology, 35(9):095013, jul 2020.J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J.-P. Maria, and P. E. Hopkins. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Advanced Materials, 30(51):1805004, 2018.D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe. Colossal dielectric constant in high entropy oxides. physica status solidi (RRL) – Rapid Research Letters, 10(4):328–333, 2016.D. Bérardan, S. Franger, A. K. Meena, and N. Dragoe. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A, 4:9536–9541, 2016.B. Cantor, I. T. Chang, P. Knight, and A. J. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 375-377(1-2 SPEC. ISS.):213–218, 2004.E. S. Chaos. Synthesis and characterization of high entropy spinel oxides, 2023.S.-J. Cho, M.-J. Uddin, and P. Alaboina. Chapter three - review of nanotechnology for cathode materials in batteries. In L. M. Rodriguez-Martinez and N. Omar, editors, Emerging Nanotechnologies in Rechargeable Energy Storage Systems, Micro and Nano Technologies, pages 83–129. Elsevier, Boston, 2017.J. Cieslak, M. Reissner, K. Berent, J. Dabrowa, M. Stygar, M. Mozdzierz, and M. Zajusz. Magnetic properties and ionic distribution in high entropy spinels studied by mössbauer and ab initio methods. Acta Materialia, 206:116600, 2021.B. Cullity. Elements of X-ray Diffraction. Addison-Wesley series in metallurgy and materials. Addison-Wesley Publishing Company, 1978.S. Dai, M. Li, X. Wang, H. Zhu, Y. Zhao, and Z. Wu. Fabrication and magnetic property of novel (co,zn,fe,mn,ni)3o4 high-entropy spinel oxide. Journal of Magnetism and Magnetic Materials, 536:168123, 2021.J. R. Deschamps and J. L. Flippen-Anderson. Crystallography. In R. A. Meyers, editor, Encyclopedia of Physical Science and Technology (Third Edition), pages 121–153. Academic Press, New York, third edition edition, 2002.A.-J. Dianoux and G. Lander, editors. Neutron Data Booklet. Old City Publishing, Philadelphia, PA, 2 edition, 2003.J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin. Synthesis and microstructure of the (co,cr,fe,mn,ni)3o4 high entropy oxide characterized by spinel structure. Materials letters, 216:32–36, 2018.A. Elfalaky and S. Soliman. Theoretical investigation of mnfe2o4. Journal of Alloys and Compounds, 580:401–406, 2013.B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201):1153–1158, 2014.A. Hakeem, T. Alshahrani, G. Muhammad, M. Alhossainy, A. Laref, A. R. Khan, I. Ali, H. M. Tahir Farid, T. Ghrib, S. R. Ejaz, and R. Y. Khosa. Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. Journal of Materials Research and Technology, 11:158–169, Mar. 2021.G. H. Johnstone, M. U. González-Rivas, K. M. Taddei, R. Sutarto, G. A. Sawatzky, R. J. Green, M. Oudah, and A. M. Hallas. Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide. Journal of the American Chemical Society, 144(45):20590–20600, 2022.M. C. Kemei, S. L. Moffitt, D. P. Shoemaker, and R. Seshadri. Evolution of magnetic properties in the normal spinel solid solution mg1−xcuxcr2o4. Journal of Physics: Condensed Matter, 24(4):046003, Jan. 2012.A. Kirsch, E. D. Bøjesen, N. Lefeld, R. Larsen, J. K. Mathiesen, S. L. Skjærvø, R. K. Pittkowski, D. Sheptyakov, and K. M. Jensen. High-entropy oxides in the mullite-type structure. Chemistry of Materials, 35(20):8664–8674, Oct. 2023.L. B. Kong, L. Liu, Z. Yang, S. Li, T. Zhang, and C. Wang. 15 - theory of ferrimagnetism and ferrimagnetic metal oxides. In B. D. Stojanovic, editor, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Metal Oxides, pages 287–311. Elsevier, 2018.R. Kotnala and J. Shah. Chapter 4 - ferrite materials: Nano to spintronics regime. volume 23 of Handbook of Magnetic Materials, pages 291–379. Elsevier, 2015.A. Kyriacou. Simultaneous X-ray and Neutron Diffraction Rietveld Refinements of Nanophase Fe Substituted Hydroxyapatite. PhD thesis, Florida Atlantic University, 2012.S. Küçükdermenci, D. Kutluay, and I. Avgin. Synthesis of a fe3o4/paa-based magnetic fluid for faraday-rotation measurements. Materiali in Tehnologije, 47:71–78, 08 2012.K. Lefmann. Neutron scattering: Theory, instrumentation, and simulation. unpublished, 2023.Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama. Correlation between particle size/domain structure and magnetic properties of highly crystalline fe3o4 nanoparticles. Scientific Reports, 7(1), Aug. 2017.J. Ma, V. O. Garlea, A. Rondinone, A. A. Aczel, S. Calder, C. dela Cruz, R. Sinclair, W. Tian, S. Chi, A. Kiswandhi, J. S. Brooks, H. D. Zhou, and M. Matsuda. Magnetic and structural phase transitions in the spinel compound fe1+xcr2−xO4. Phys. Rev. B, 89:134106, Apr 2014.A. Mao, F. Quan, H. Z. Xiang, Z. G. Zhang, K. Kuramoto, and A. L. Xia. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 1194:11–18, 2019.A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia. A new class of spinel high-entropy oxides with controllable magnetic properties. Journal of Magnetism and Magnetic Materials, 497:165884, 2020.R. Moon, W. Koehler, and J. W. Cable. Magnetic form factor of 3d and 4d paramagnetic metals. In Proceedings of the conference on neutron scattering, volume 2, pages 577–592, Oak Ridge, Tennessee, June 1976. Oak Ridge National Lab. and U.S. Energy Research and Development Administration, Oak Ridge National Laboratory.O. Mounkachi, R. Lamouri, E. Salmani, M. Hamedoun, A. Benyoussef, and H. Ez-Zahraouy. Origin of the magnetic properties of mnfe2o4 spinel ferrite: Ab initio and monte carlo simulation. Journal of Magnetism and Magnetic Materials, 533:168016, 2021.N. Mufti, A. A. Nugroho, G. R. Blake, and T. T. M. Palstra. Magnetodielectric coupling in frustrated spin systems: the spinels mcr2o4(m = mn, co and ni). Journal of Physics: Condensed Matter, 22(7):075902, Feb. 2010.O. Muktaridha, A. Adlim, S. Suhendrayatna, and I. Ismail. Progress of 3d metal-doped zinc oxide nanoparticles and the photocatalytic properties. Arabian Journal of Chemistry, 14:103175, 04 2021. S. P. Murarka. Metallization : theory and practice for VLSI and ULSI. page 250, 1993.B. Musicó, Q. Wright, T. Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens. Tunable magnetic ordering through cation selection in entropic spinel oxides. Physical Review Materials, 3(10):1–10, 2019.R. Nathans and A. Paoletti. Magnetic form factor of cobalt. Phys. Rev. Lett., 2:254–256, Mar 1959.None Available. Materials data on fe3o4 by materials project, 2020.I. Panneer Muthuselvam and R. Bhowmik. Mechanical alloyed ho3+ doping in cofe2o4 spinel ferrite and understanding of magnetic nanodomains. Journal of Magnetism and Magnetic Materials, 322(7):767–776, 2010.T. Parida, A. Karati, K. Guruvidyathri, B. S. Murty, and G. Markandeyulu. Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure. Scripta Materialia, 178:513–517, 2020.W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. A. Tutmaher, J. C. Leiner, M. D. Lumsden, C. M. Lavelle, X. P. Wang, C. Hoffmann, M. A. Siegler, N. Haldolaarachchige, D. P. Young, and T. M. McQueen. On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals. Sci. Rep., 6(1):20860, Feb. 2016.A. C. Rodríguez. Tuning the magnetic properties of multiferroic BiFeO3: From bulk to nanoscale. PhD thesis, Universidad de los Andes, 2022.C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Cur- tarolo, and J. P. Maria. Entropy-stabilized oxides. Nature Communications, 6, 2015.W. Roth. The magnetic structure of co3o4. The Journal of physics and chemistry of solids, 25(1):1–10, 1964.A. Sarkar, B. Eggert, R. Witte, J. Lill, L. Velasco, Q. Wang, J. Sonar, K. Ollefs, S. S. Bhattacharya, R. A. Brand, H. Wende, F. M. de Groot, O. Clemens, H. Hahn, and R. Kruk. Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (co0.2cr0.2fe0.2mn0.2ni0.2)3o4: Unraveling the suppression of configuration entropy in high entropy oxides. Acta materialia, 226:1–, 2022.A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, and B. Breitung. High entropy oxides for reversible energy storage. Nature Communications, 9(1), 2018.O. Senkov, G. Wilks, D. Miracle, C. Chuang, and P. Liaw. Refractory high-entropy alloys. Intermetallics, 18(9):1758–1765, 2010.S. H. Simon. The Oxford solid state basics. Oxford University Press, Oxford, 2013.K. Singh, A. Maignan, C. Simon, and C. Martin. FeCr2O4 and CoCr2O4 spinels: Multiferroicity in the collinear magnetic state? Applied Physics Letters, 99(17):172903, 10 2011.R. Singh Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, and V. Enev. Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered co1−xznxfe2o4 (x = 0.0, 0.5) spinel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 447:48–57, Feb. 2018.K. Sneppen and J. O. Haerter. Complex physics (lecture notes). unpublished, 2023.T. F. Soules and J. W. Richardson. Electron delocalization and the neutron magnetic form factor of Mn+2 and Ni+2 antiferromagnetic salts. Phys. Rev. Lett., 25:110–114, Jul 1970.B. Stephen. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics. OUP Oxford, 2001.Y. Sun and S. Dai. High-entropy materials for catalysis: A new frontier. Science Advances, 7(20):eabg1600, 2021.D. Thapa, N. Kulkarni, S. N. Mishra, P. L. Paulose, and P. Ayyub. Enhanced magnetization in cubic ferrimagnetic cufe2o4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. Journal of Physics D: Applied Physics, 43(19):195004, apr 2010.R. Witte, A. Sarkar, R. Kruk, B. Eggert, R. A. Brand, H. Wende, and H. Hahn. High- entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater., 3:034406, Mar 2019.J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5):299–303, 2004.J. M. Yeomans. Statistical mechanics of phase transitions. Clarendon Press, Oxford, England, May 1992.Y. Yin, F. Shi, G.-Q. Liu, X. Tan, J. Jiang, A. Tiwari, and B. Li. Spin-glass behavior and magnetocaloric properties of high-entropy perovskite oxides. Applied Physics Letters, 120(8):082404, 02 2022.C. J. N. B. Yvonne M. Mos, Arnold C. Vermeulen and J. Weijma. X-ray diffraction of iron containing samples: The importance of a suitable configuration. Geomicrobiology Journal, 35(6):511–517, 2018.J. Zhang, J. Yan, S. Calder, Q. Zheng, M. A. McGuire, D. L. Abernathy, Y. Ren, S. H. Lapidus, K. Page, H. Zheng, J. W. Freeland, J. D. Budai, and R. P. Hermann. Long- Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. Chemistry of Materials, 31(10):3705–3711, 2019.Y. Zhang. High-Entropy Materials: A Brief Introduction. Springer Singapore Pte. Limited, Singapore, 2019.201912366Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::22036-16ce2beec-157c-481d-8faa-d682fa74a732virtual::22036-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::22036-1ORIGINALautorizacion tesis fisica.pdfautorizacion tesis fisica.pdfHIDEapplication/pdf276108https://repositorio.uniandes.edu.co/bitstreams/75559131-ff3b-4f6c-b57c-fd5e8019f457/download7ddb119557d0f8c8560b2afada8da299MD51High-Entropy Spinel Oxides.pdfHigh-Entropy Spinel Oxides.pdfapplication/pdf4191379https://repositorio.uniandes.edu.co/bitstreams/0627d28b-25ea-4349-90da-925edc985f91/downloaddf5cf8a016ff53de442e23e1d73c9824MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/5c8317e8-d81b-4082-bfaf-56b697e4db6f/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/7108b93d-c9a5-4cce-942b-b1a948818844/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis fisica.pdf.txtautorizacion tesis fisica.pdf.txtExtracted texttext/plain1993https://repositorio.uniandes.edu.co/bitstreams/ffa84933-cb49-4f0a-9bf1-0de38648ab46/download6d22b5dab148292960be3909a3a103b4MD55High-Entropy Spinel Oxides.pdf.txtHigh-Entropy Spinel Oxides.pdf.txtExtracted texttext/plain100974https://repositorio.uniandes.edu.co/bitstreams/6ecde698-1b6b-4bd1-96b7-7b544c581684/download4327de522c19d452585fb0a6cd8aad5cMD57THUMBNAILautorizacion tesis fisica.pdf.jpgautorizacion tesis fisica.pdf.jpgGenerated Thumbnailimage/jpeg11011https://repositorio.uniandes.edu.co/bitstreams/a78c414f-511b-4003-9d4a-20d4305899a5/download27471e3d87feff5f3004c1ea0fa0466bMD56High-Entropy Spinel Oxides.pdf.jpgHigh-Entropy Spinel Oxides.pdf.jpgGenerated Thumbnailimage/jpeg7629https://repositorio.uniandes.edu.co/bitstreams/71774958-7d47-49a5-a8c0-428f1de002d0/downloadc9a70f1551d88b7dd9ffdf67bae91100MD581992/75401oai:repositorio.uniandes.edu.co:1992/754012025-01-15 03:07:26.979http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |