Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación

La investigación hace uso del sistema de alerta E3WS para estimar sismos en el cluster sísmico de Murindo y Cauca.

Autores:
Montenegro Folleco, Juan Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68094
Acceso en línea:
http://hdl.handle.net/1992/68094
Palabra clave:
Murindo
Cauca
Sistema de alerta temprana
Machine learning
Geociencias
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_4c34d8e23dcea87b060ffa2cdbad59ea
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68094
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
title Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
spellingShingle Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
Murindo
Cauca
Sistema de alerta temprana
Machine learning
Geociencias
title_short Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
title_full Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
title_fullStr Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
title_full_unstemmed Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
title_sort Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación
dc.creator.fl_str_mv Montenegro Folleco, Juan Andrés
dc.contributor.advisor.none.fl_str_mv Nitescu, Bogdan
dc.contributor.author.none.fl_str_mv Montenegro Folleco, Juan Andrés
dc.contributor.jury.none.fl_str_mv Poveda, Esteban
dc.subject.keyword.none.fl_str_mv Murindo
Cauca
Sistema de alerta temprana
Machine learning
topic Murindo
Cauca
Sistema de alerta temprana
Machine learning
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description La investigación hace uso del sistema de alerta E3WS para estimar sismos en el cluster sísmico de Murindo y Cauca.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-04T21:32:11Z
dc.date.available.none.fl_str_mv 2023-07-04T21:32:11Z
dc.date.issued.none.fl_str_mv 2023-06-02
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68094
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68094
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Alhamzawi, R., & Ali, H. T. M. (2018). The Bayesian adaptive lasso regression. Mathematical biosciences, 303, 75-82. https://doi.org/10.1016/j.mbs.2018.06.004
Allen, R. P., Gasparini, P., Kamigaichi, O., & Böse, M. (2009). The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5), 682-693. https://doi.org/10.1785/gssrl.80.5.682
Alves, A. F. (2017). Stacking machine learning classifiers to identify Higgs bosons at the LHC. Journal of Instrumentation, 12(05), T05005. https://doi.org/10.1088/1748-0221/12/05/t05005
Aoi, S., Kunugi, T., & Fujiwara, H. (2004). STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net. Journal of Japan Association for Earthquake Engineering, 4(3), 65-74. https://doi.org/10.5610/jaee.4.3_65
Barrientos, S. (2018). The Seismic Network of Chile. Seismological Research Letters, 89(2A), 467-474. https://doi.org/10.1785/0220160195
Bergen, K. J., Johnson, P., De Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433). https://doi.org/10.1126/science.aau0323
Bernal Olaya, Rocio & Vargas, Carlos. (2015). Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia. http://dx.doi.org/10.1306/13531939M1083642.
Chandramouli, S., Dutt, S., & Das, A. (2018). Machine Learning (1st edition). Pearson Education India.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. ACM. https://doi.org/10.1145/2939672.2939785
Cortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020
Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366. https://doi.org/10.1109/tassp.1980.1163420
Lara, P., Fernandes, C. A., Inza, A., Mars, J., Métaxian, J., Mura, M. D., & Malfante, M. (2020). Automatic Multichannel Volcano-Seismic Classification Using Machine Learning and EMD. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1322-1331. https://doi.org/10.1109/jstars.2020.2982714
De Mello, R. F., & Ponti, M. A. (2018). Machine Learning. En Springer eBooks. https://doi.org/10.1007/978-3-319-94989-5
Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2010). Feedback Control of Dynamic Systems. Prentice Hall.
Gal, M. S., & Rubinfeld, D. L. (2018). Data Standardization. Social Science Research Network. https://doi.org/10.2139/ssrn.3326377
Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open issues. Computer Science Review, 37, 100254. https://doi.org/10.1016/j.cosrev.2020.100254
Gasparini, P., Manfredi, G., & Zschau, J. (2007). Earthquake Early Warning Systems. En Springer eBooks. https://doi.org/10.1007/978-3-540-72241-0
Goldstein, P. A., & Dodge, D. (1999). Fast and accurate depth and source mechanism estimation using P-waveform modeling: A tool for special event analysis, event screening, and regional calibration. Geophysical Research Letters, 26(16), 2569-2572. https://doi.org/10.1029/1999gl900579
Gutscher, M., Malavieille, J., Lallemand, S., & Collot, J. (1999). Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 168(3-4), 255-270. https://doi.org/10.1016/s0012-821x(99)00060-6
Havskov, J., & Alguacil, G. (2016). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6
Havskov, J., & Alguacil, G. (2016b). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6
Idárraga-García, J., Kendall, J., & Vargas, C. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17(9), 3655-3673. https://doi.org/10.1002/2016gc006323
Igel, H. (2017). Computational Seismology: A Practical Introduction. Oxford University Press, USA.
Jung, A. (2022). Machine Learning. En Machine Learning: Foundations, Methodologies, and Applications. Springer Nature. https://doi.org/10.1007/978-981-16-8193-6
Kschischang, F. (2015). The hilbert transform. University of Toronto
Lara, P., Bletery, Q., Ampuero, J., & Inza, A. (2023). Earthquake Early Warning using 3 seconds of records on a single station. Authorea (Authorea). https://doi.org/10.22541/essoar.167751595.54607499/v1
Li, Z., Meier, M., Hauksson, E., Zhan, Z., & Andrews, J. E. (2018). Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning. Geophysical Research Letters, 45(10), 4773-4779. https://doi.org/10.1029/2018gl077870
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. En Modern approaches in geophysics (pp. 101-134). Springer Nature (Netherlands). https://doi.org/10.1007/978-94-015-9536-0_5
Ma, S. (2010). Focal Depth Determination for Moderate and Small Earthquakes by Modeling Regional Depth Phases sPg, sPmP, and sPn. Bulletin of the Seismological Society of America, 100(3), 1073-1088. https://doi.org/10.1785/0120090103
Macfarlane, A. G. J., & Karcanias, N. (1976). Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory. International Journal of Control, 24(1), 33-74. https://doi.org/10.1080/00207177608932805
Malfante, M., Mura, M. D., Métaxian, J., Mars, J., Macedo, O., & Inza, A. (2018). Machine Learning for Volcano-Seismic Signals: Challenges and Perspectives. IEEE Signal Processing Magazine, 35(2), 20-30. https://doi.org/10.1109/msp.2017.2779166
Mo, H. Y., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564. https://doi.org/10.1016/j.enbuild.2019.109564
Boada, M. A., Poveda, E., & Tary, J. B. (2022). Lithospheric and Slab Configurations From Receiver Function Imaging in Northwestern South America, Colombia. Journal Of Geophysical Research: Solid Earth, 127(12). https://doi.org/10.1029/2022jb024475
Mousavi, S. M., & Beroza, G. C. (2020). A Machine Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019gl085976
Mousavi, S. M., & Beroza, G. C. (2020b). Bayesian-Deep-Learning Estimation of Earthquake Location From Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 8211-8224. https://doi.org/10.1109/tgrs.2020.2988770
Mousavi, S. M., Sheng, Y. P., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464-179476. https://doi.org/10.1109/access.2019.2947848
Nuñez, Alejandra. (2016). Análisis del desempeño de la Red Sísmica del Noroeste de México para la evaluación y el control de calidad de los datos generados. http://dx.doi.org/10.13140/RG.2.2.13969.63847
Massachusetts Institute of Technology Department of Mechanical Engineering. (s.f). Understanding poles and zeros
Pan, B. (2018). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. IOP Conference Series: Earth and Environmental Science, 113, 012127. https://doi.org/10.1088/1755-1315/113/1/012127
Parhi, K. K., & Ayinala, M. (2014). Low-Complexity Welch Power Spectral Density Computation. IEEE Transactions on Circuits and Systems I-regular Papers, 61(1), 172-182. https://doi.org/10.1109/tcsi.2013.2264711
Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681-686. https://doi.org/10.1198/016214508000000337
Garcia, P. J., Vargas, C., & J, H. M. (2007). GEOMETRIC MODEL OF THE NAZCA PLATE SUBDUCTION IN SOUTHWEST COLOMBIA. Earth Sciences Research Journal, 11(2), 124-134. http://www.scielo.org.co/pdf/esrj/v11n2/v11n2a03.pdf
Pennington, W. D. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research, 86(B11), 10753-10770. https://doi.org/10.1029/jb086ib11p10753
Perol, T., Gharbi, M., & Denolle, M. A. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2). https://doi.org/10.1126/sciadv.1700578
Poveda, S. (2022). REANALISIS SISMOTECTONICO DEL CLUSTER SISMICO DE MURINDO. Universidad de los Andes
Prabhu, K. (2013). Window Functions and Their Applications in Signal Processing. Taylor and Francis Group. https://doi.org/10.1201/9781315216386
Ranstam, J., & Cook, J. (2018). LASSO regression. British Journal of Surgery, 105(10), 1348. https://doi.org/10.1002/bjs.10895
Scherbaum, F. (2001). RC Filter. En Modern approaches in geophysics (pp. 12-38). Springer Nature (Netherlands). https://doi.org/10.1007/978-1-4020-6861-4_2
Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG 11-30. https://doi.org/10.1029/2000jb000033
Shearer, P. M. (2009). Introduction to seismology. Choice Reviews Online, 37(08), 37-4521. https://doi.org/10.5860/choice.37-4521
Houston, H. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell publishing. https://doi.org/10.1063/1.1629009
Suárez, G. (2022). The Seismic Early Warning System of Mexico (SASMEX): A Retrospective View and Future Challenges. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.827236
Tary, J., Boada, M. A., Vargas, C., Monoga, A. M. M., Naranjo-Hernandez, D. F., & Quiroga, D. E. (2022). Source characteristics of the Mw 6 Mutatá earthquake, Murindo seismic cluster, northwestern Colombia. Journal of South American Earth Sciences, 115, 103728. https://doi.org/10.1016/j.jsames.2022.103728
Taylor, R. L. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35-39. https://doi.org/10.1177/875647939000600106
Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the royal statistical society series b-methodological, 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Ulrich, T. (2006). Envelope Calculation from the Hilbert Transform.
Vargas, C. (2019). Subduction geometries in northwestern South America. doi: 10.32685/pub.esp.38.2019.11.
Vargas, C., Pujades, L., & Montes, L. A. O. (2007). Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofisica Internacional, 46(2), 117-127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21
Vargas, C., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328
Veloza, G., Styron, R. H., Taylor, M. D., & Mora, A. (2012). Open-source archive of active faults for northwest South America. GSA today, 22(10), 4-10. https://doi.org/10.1130/gsat-g156a.1
Wei, F., & Li, M. (2003). Cepstrum analysis of seismic source characteristics. Acta Seismologica Sinica, 16(1), 50-58. https://doi.org/10.1007/s11589-003-0006-9
Wielandt, E. (2012). Seismic Sensors and their Calibration. Streckeisen Seismic Instrumentation, 1-51. https://doi.org/10.2312/gfz.nmsop-2_ch5
Wu, C. (s. f.). hypo71 Tutorial. http://geophysics.eas.gatech.edu/people/cwu/teaching/hypo71/hypo71.html
Yu, S., & Ma, J. (2021). Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3). https://doi.org/10.1029/2021rg000742
Zarifi, Z., Havskov, J., & Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1-2), 93-105. https://doi.org/10.1016/j.tecto.2007.06.004
Zhao, P., & Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine Learning Research, 7(90), 2541-2563. https://statistics.berkeley.edu/sites/default/files/tech-reports/702.pdf
Zhou, Z. (2022). Machine Learning. Springer.
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 63 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/2146211d-3e3e-49c6-9a55-63c7143c56e0/download
https://repositorio.uniandes.edu.co/bitstreams/f7a982e9-af83-427e-ae6d-b5a403d92bf8/download
https://repositorio.uniandes.edu.co/bitstreams/827153cc-e2ee-4c46-9486-0f787242b6ba/download
https://repositorio.uniandes.edu.co/bitstreams/ec6705bc-8e82-45ca-af7e-388cf9c30bab/download
https://repositorio.uniandes.edu.co/bitstreams/5be9605b-3e29-458c-a2bf-b7242749c4c1/download
https://repositorio.uniandes.edu.co/bitstreams/80e6840d-e4c8-4f15-9bef-c72fceae2155/download
https://repositorio.uniandes.edu.co/bitstreams/1ac44423-7c82-4eaf-bba1-5225d1001456/download
https://repositorio.uniandes.edu.co/bitstreams/fa091bfa-a158-4998-85db-0a75cf589b89/download
https://repositorio.uniandes.edu.co/bitstreams/81926bdb-4f09-4b10-9d5e-ce7225ca79c6/download
https://repositorio.uniandes.edu.co/bitstreams/a26fd0e2-947e-4a3d-bbf5-8d3b4715bc24/download
bitstream.checksum.fl_str_mv 5ea0d0301759d259c50f83c7ac3e42ac
01719415e72ba82b1c956cd3ecdf3385
5ea0d0301759d259c50f83c7ac3e42ac
b5bee12ed63ffda4c0c4b962618a0f2a
f2b67326931be40cbfb324eb56ce7ed5
5aa5c691a1ffe97abd12c2966efcb8d6
59dc10d90f44b741a4d06fe3ffe85249
08b106dfeb12472e88207a069e15ba30
fad144dbb32e77067871f52ef78dd77a
f7d494f61e544413a13e6ba1da2089cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133969918951424
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nitescu, Bogdan02be7cac-ea72-4cf0-8de6-5f25edeea76f600Montenegro Folleco, Juan Andrés624c7d15-1aac-4d9d-a3ea-27d1878aec3c600Poveda, Esteban2023-07-04T21:32:11Z2023-07-04T21:32:11Z2023-06-02http://hdl.handle.net/1992/68094instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La investigación hace uso del sistema de alerta E3WS para estimar sismos en el cluster sísmico de Murindo y Cauca.El marco geodinámico de Colombia se caracteriza por una interacción compleja entre tres placas tectónicas: la Sudamericana, la de Nazca y la del Caribe, junto con la interacción entre el bloque Panamá-Choco y el bloque norte de los Andes. Estas interacciones dan lugar a zonas sísmicas con una marcada agrupación, como el enjambre sísmico de Cauca, Murindo y Bucaramanga, cada una de las cuales presenta propiedades geodinámicas distintas. Consecuentemente, lograr una caracterización temprana de los eventos sísmicos asume una importancia crítica; sin embargo, el limitado número de estaciones disponibles en la región plantea un reto significativo en este esfuerzo. En las últimas décadas se ha avanzado considerablemente en el desarrollo y la aplicación de diversas técnicas de aprendizaje automático en el campo de la sismología. Una parte importante de la investigación se ha dedicado aprovechar estos avances para facilitar la localización de terremotos utilizando una única estación. Por tal razón, el presente estudio introduce un sistema sísmico de alerta temprana conocido como E3WS, diseñado específicamente para estimar las magnitudes y localizaciones de terremotos utilizando datos de una única estación. En particular, el sistema E3WS comprende seis modelos entrenados mediante la utilización de técnicas de aprendizaje automático supervisado, concretamente los algoritmos XGBoost y LASSO. Cabe destacar que los resultados obtenidos muestran un comportamiento coherente con las investigaciones anteriores realizadas utilizando el sistema E3WS. En este estudio se utilizó un conjunto de datos compuesto por 110 registros sísmicos comprendidos entre 2016 y 2023, obtenidos de las estaciones HEL y PAL, que son estaciones sísmicas del Servicio Geológico Colombiano ubicadas en las proximidades de los clústeres de Murindo y Cauca, respectivamente. Para evaluar la precisión de las estimaciones, se realizó una comparación entre las estimaciones derivadas del sistema E3WS y los eventos sísmicos listados en el catálogo sísmico del Servicio Geológico. Los resultados revelan que, en el caso del clúster de Murindo, los eventos sísmicos mostraron errores absolutos medios de 0.24 en la estimación de la magnitud, 12.66 km en la estimación de la distancia, 16.53 km en la estimación de la profundidad y 57.07° en la estimación del retroazimut. Sin embargo, en el caso del cluster Cauca, los errores aumentaron significativamente debido a factores asociados al sistema, resultando en errores absolutos medios de 0.34 para la magnitud, 47.14 km para la distancia, 6872 km para la profundidad y 90.34° para la estimación del retroazimut. Además, el estudio llevó a cabo una evaluación de diversos factores que contribuyeron a la amplificación de los errores en los resultados de la estimación.GeocientíficoPregrado63 páginasapplication/pdfspaUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estaciónTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMurindoCaucaSistema de alerta tempranaMachine learningGeocienciasAlhamzawi, R., & Ali, H. T. M. (2018). The Bayesian adaptive lasso regression. Mathematical biosciences, 303, 75-82. https://doi.org/10.1016/j.mbs.2018.06.004Allen, R. P., Gasparini, P., Kamigaichi, O., & Böse, M. (2009). The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5), 682-693. https://doi.org/10.1785/gssrl.80.5.682Alves, A. F. (2017). Stacking machine learning classifiers to identify Higgs bosons at the LHC. Journal of Instrumentation, 12(05), T05005. https://doi.org/10.1088/1748-0221/12/05/t05005Aoi, S., Kunugi, T., & Fujiwara, H. (2004). STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net. Journal of Japan Association for Earthquake Engineering, 4(3), 65-74. https://doi.org/10.5610/jaee.4.3_65Barrientos, S. (2018). The Seismic Network of Chile. Seismological Research Letters, 89(2A), 467-474. https://doi.org/10.1785/0220160195Bergen, K. J., Johnson, P., De Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433). https://doi.org/10.1126/science.aau0323Bernal Olaya, Rocio & Vargas, Carlos. (2015). Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia. http://dx.doi.org/10.1306/13531939M1083642.Chandramouli, S., Dutt, S., & Das, A. (2018). Machine Learning (1st edition). Pearson Education India.Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. ACM. https://doi.org/10.1145/2939672.2939785Cortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366. https://doi.org/10.1109/tassp.1980.1163420Lara, P., Fernandes, C. A., Inza, A., Mars, J., Métaxian, J., Mura, M. D., & Malfante, M. (2020). Automatic Multichannel Volcano-Seismic Classification Using Machine Learning and EMD. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1322-1331. https://doi.org/10.1109/jstars.2020.2982714De Mello, R. F., & Ponti, M. A. (2018). Machine Learning. En Springer eBooks. https://doi.org/10.1007/978-3-319-94989-5Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2010). Feedback Control of Dynamic Systems. Prentice Hall.Gal, M. S., & Rubinfeld, D. L. (2018). Data Standardization. Social Science Research Network. https://doi.org/10.2139/ssrn.3326377Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open issues. Computer Science Review, 37, 100254. https://doi.org/10.1016/j.cosrev.2020.100254Gasparini, P., Manfredi, G., & Zschau, J. (2007). Earthquake Early Warning Systems. En Springer eBooks. https://doi.org/10.1007/978-3-540-72241-0Goldstein, P. A., & Dodge, D. (1999). Fast and accurate depth and source mechanism estimation using P-waveform modeling: A tool for special event analysis, event screening, and regional calibration. Geophysical Research Letters, 26(16), 2569-2572. https://doi.org/10.1029/1999gl900579Gutscher, M., Malavieille, J., Lallemand, S., & Collot, J. (1999). Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 168(3-4), 255-270. https://doi.org/10.1016/s0012-821x(99)00060-6Havskov, J., & Alguacil, G. (2016). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6Havskov, J., & Alguacil, G. (2016b). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6Idárraga-García, J., Kendall, J., & Vargas, C. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17(9), 3655-3673. https://doi.org/10.1002/2016gc006323Igel, H. (2017). Computational Seismology: A Practical Introduction. Oxford University Press, USA.Jung, A. (2022). Machine Learning. En Machine Learning: Foundations, Methodologies, and Applications. Springer Nature. https://doi.org/10.1007/978-981-16-8193-6Kschischang, F. (2015). The hilbert transform. University of TorontoLara, P., Bletery, Q., Ampuero, J., & Inza, A. (2023). Earthquake Early Warning using 3 seconds of records on a single station. Authorea (Authorea). https://doi.org/10.22541/essoar.167751595.54607499/v1Li, Z., Meier, M., Hauksson, E., Zhan, Z., & Andrews, J. E. (2018). Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning. Geophysical Research Letters, 45(10), 4773-4779. https://doi.org/10.1029/2018gl077870Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. En Modern approaches in geophysics (pp. 101-134). Springer Nature (Netherlands). https://doi.org/10.1007/978-94-015-9536-0_5Ma, S. (2010). Focal Depth Determination for Moderate and Small Earthquakes by Modeling Regional Depth Phases sPg, sPmP, and sPn. Bulletin of the Seismological Society of America, 100(3), 1073-1088. https://doi.org/10.1785/0120090103Macfarlane, A. G. J., & Karcanias, N. (1976). Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory. International Journal of Control, 24(1), 33-74. https://doi.org/10.1080/00207177608932805Malfante, M., Mura, M. D., Métaxian, J., Mars, J., Macedo, O., & Inza, A. (2018). Machine Learning for Volcano-Seismic Signals: Challenges and Perspectives. IEEE Signal Processing Magazine, 35(2), 20-30. https://doi.org/10.1109/msp.2017.2779166Mo, H. Y., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564. https://doi.org/10.1016/j.enbuild.2019.109564Boada, M. A., Poveda, E., & Tary, J. B. (2022). Lithospheric and Slab Configurations From Receiver Function Imaging in Northwestern South America, Colombia. Journal Of Geophysical Research: Solid Earth, 127(12). https://doi.org/10.1029/2022jb024475Mousavi, S. M., & Beroza, G. C. (2020). A Machine Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019gl085976Mousavi, S. M., & Beroza, G. C. (2020b). Bayesian-Deep-Learning Estimation of Earthquake Location From Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 8211-8224. https://doi.org/10.1109/tgrs.2020.2988770Mousavi, S. M., Sheng, Y. P., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464-179476. https://doi.org/10.1109/access.2019.2947848Nuñez, Alejandra. (2016). Análisis del desempeño de la Red Sísmica del Noroeste de México para la evaluación y el control de calidad de los datos generados. http://dx.doi.org/10.13140/RG.2.2.13969.63847Massachusetts Institute of Technology Department of Mechanical Engineering. (s.f). Understanding poles and zerosPan, B. (2018). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. IOP Conference Series: Earth and Environmental Science, 113, 012127. https://doi.org/10.1088/1755-1315/113/1/012127Parhi, K. K., & Ayinala, M. (2014). Low-Complexity Welch Power Spectral Density Computation. IEEE Transactions on Circuits and Systems I-regular Papers, 61(1), 172-182. https://doi.org/10.1109/tcsi.2013.2264711Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681-686. https://doi.org/10.1198/016214508000000337Garcia, P. J., Vargas, C., & J, H. M. (2007). GEOMETRIC MODEL OF THE NAZCA PLATE SUBDUCTION IN SOUTHWEST COLOMBIA. Earth Sciences Research Journal, 11(2), 124-134. http://www.scielo.org.co/pdf/esrj/v11n2/v11n2a03.pdfPennington, W. D. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research, 86(B11), 10753-10770. https://doi.org/10.1029/jb086ib11p10753Perol, T., Gharbi, M., & Denolle, M. A. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2). https://doi.org/10.1126/sciadv.1700578Poveda, S. (2022). REANALISIS SISMOTECTONICO DEL CLUSTER SISMICO DE MURINDO. Universidad de los AndesPrabhu, K. (2013). Window Functions and Their Applications in Signal Processing. Taylor and Francis Group. https://doi.org/10.1201/9781315216386Ranstam, J., & Cook, J. (2018). LASSO regression. British Journal of Surgery, 105(10), 1348. https://doi.org/10.1002/bjs.10895Scherbaum, F. (2001). RC Filter. En Modern approaches in geophysics (pp. 12-38). Springer Nature (Netherlands). https://doi.org/10.1007/978-1-4020-6861-4_2Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG 11-30. https://doi.org/10.1029/2000jb000033Shearer, P. M. (2009). Introduction to seismology. Choice Reviews Online, 37(08), 37-4521. https://doi.org/10.5860/choice.37-4521Houston, H. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell publishing. https://doi.org/10.1063/1.1629009Suárez, G. (2022). The Seismic Early Warning System of Mexico (SASMEX): A Retrospective View and Future Challenges. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.827236Tary, J., Boada, M. A., Vargas, C., Monoga, A. M. M., Naranjo-Hernandez, D. F., & Quiroga, D. E. (2022). Source characteristics of the Mw 6 Mutatá earthquake, Murindo seismic cluster, northwestern Colombia. Journal of South American Earth Sciences, 115, 103728. https://doi.org/10.1016/j.jsames.2022.103728Taylor, R. L. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35-39. https://doi.org/10.1177/875647939000600106Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the royal statistical society series b-methodological, 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.xUlrich, T. (2006). Envelope Calculation from the Hilbert Transform.Vargas, C. (2019). Subduction geometries in northwestern South America. doi: 10.32685/pub.esp.38.2019.11.Vargas, C., Pujades, L., & Montes, L. A. O. (2007). Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofisica Internacional, 46(2), 117-127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21Vargas, C., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328Veloza, G., Styron, R. H., Taylor, M. D., & Mora, A. (2012). Open-source archive of active faults for northwest South America. GSA today, 22(10), 4-10. https://doi.org/10.1130/gsat-g156a.1Wei, F., & Li, M. (2003). Cepstrum analysis of seismic source characteristics. Acta Seismologica Sinica, 16(1), 50-58. https://doi.org/10.1007/s11589-003-0006-9Wielandt, E. (2012). Seismic Sensors and their Calibration. Streckeisen Seismic Instrumentation, 1-51. https://doi.org/10.2312/gfz.nmsop-2_ch5Wu, C. (s. f.). hypo71 Tutorial. http://geophysics.eas.gatech.edu/people/cwu/teaching/hypo71/hypo71.htmlYu, S., & Ma, J. (2021). Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3). https://doi.org/10.1029/2021rg000742Zarifi, Z., Havskov, J., & Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1-2), 93-105. https://doi.org/10.1016/j.tecto.2007.06.004Zhao, P., & Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine Learning Research, 7(90), 2541-2563. https://statistics.berkeley.edu/sites/default/files/tech-reports/702.pdfZhou, Z. (2022). Machine Learning. Springer.201815969PublicationTHUMBNAILEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación.pdf.jpgEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación.pdf.jpgIM Thumbnailimage/jpeg8429https://repositorio.uniandes.edu.co/bitstreams/2146211d-3e3e-49c6-9a55-63c7143c56e0/download5ea0d0301759d259c50f83c7ac3e42acMD56autorizacion tesis-1 - firmado BN (1).pdf.jpgautorizacion tesis-1 - firmado BN (1).pdf.jpgIM Thumbnailimage/jpeg15932https://repositorio.uniandes.edu.co/bitstreams/f7a982e9-af83-427e-ae6d-b5a403d92bf8/download01719415e72ba82b1c956cd3ecdf3385MD58Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdf.jpgEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdf.jpgIM Thumbnailimage/jpeg8429https://repositorio.uniandes.edu.co/bitstreams/827153cc-e2ee-4c46-9486-0f787242b6ba/download5ea0d0301759d259c50f83c7ac3e42acMD511ORIGINALEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdfEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdfapplication/pdf6838396https://repositorio.uniandes.edu.co/bitstreams/ec6705bc-8e82-45ca-af7e-388cf9c30bab/downloadb5bee12ed63ffda4c0c4b962618a0f2aMD59autorizacion tesis-1 - firmado BN (1).pdfautorizacion tesis-1 - firmado BN (1).pdfHIDEapplication/pdf325821https://repositorio.uniandes.edu.co/bitstreams/5be9605b-3e29-458c-a2bf-b7242749c4c1/downloadf2b67326931be40cbfb324eb56ce7ed5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/80e6840d-e4c8-4f15-9bef-c72fceae2155/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación.pdf.txtEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación.pdf.txtExtracted texttext/plain110299https://repositorio.uniandes.edu.co/bitstreams/1ac44423-7c82-4eaf-bba1-5225d1001456/download59dc10d90f44b741a4d06fe3ffe85249MD55autorizacion tesis-1 - firmado BN (1).pdf.txtautorizacion tesis-1 - firmado BN (1).pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/fa091bfa-a158-4998-85db-0a75cf589b89/download08b106dfeb12472e88207a069e15ba30MD57Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdf.txtEstimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación. Juan Andres Montenegro Folleco.pdf.txtExtracted texttext/plain110746https://repositorio.uniandes.edu.co/bitstreams/81926bdb-4f09-4b10-9d5e-ce7225ca79c6/downloadfad144dbb32e77067871f52ef78dd77aMD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/a26fd0e2-947e-4a3d-bbf5-8d3b4715bc24/downloadf7d494f61e544413a13e6ba1da2089cdMD521992/68094oai:repositorio.uniandes.edu.co:1992/680942023-10-10 18:00:53.35http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==