The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation
Staphylococcus aureus (S.aureus) is a bacterial species that exhibits a golden coloration, given by the triterpenoid carotenoid staphyloxanthin. It is present on the skin or mucous of 20% to 30% of the human population in its natural bacterial flora, but it is also an opportunistic pathogen and one...
- Autores:
-
Wandurraga López, Laura
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64711
- Acceso en línea:
- http://hdl.handle.net/1992/64711
- Palabra clave:
- Desiccation tolerance
Staphylococcus aureus
Biophysics
Carotenoids
Oxidative stress
Staphyloxanthin
Bacterial membrane
SEM
FTIR
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_49daaf8d8dfecd5637e8d69967fc063f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64711 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
title |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
spellingShingle |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation Desiccation tolerance Staphylococcus aureus Biophysics Carotenoids Oxidative stress Staphyloxanthin Bacterial membrane SEM FTIR Física |
title_short |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
title_full |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
title_fullStr |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
title_full_unstemmed |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
title_sort |
The role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccation |
dc.creator.fl_str_mv |
Wandurraga López, Laura |
dc.contributor.advisor.none.fl_str_mv |
Leidy, Chad |
dc.contributor.author.none.fl_str_mv |
Wandurraga López, Laura |
dc.contributor.jury.none.fl_str_mv |
Forero Shelton, Antonio Manu |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Biophysics bacterial membrane |
dc.subject.keyword.none.fl_str_mv |
Desiccation tolerance Staphylococcus aureus Biophysics Carotenoids Oxidative stress Staphyloxanthin Bacterial membrane SEM FTIR |
topic |
Desiccation tolerance Staphylococcus aureus Biophysics Carotenoids Oxidative stress Staphyloxanthin Bacterial membrane SEM FTIR Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
Staphylococcus aureus (S.aureus) is a bacterial species that exhibits a golden coloration, given by the triterpenoid carotenoid staphyloxanthin. It is present on the skin or mucous of 20% to 30% of the human population in its natural bacterial flora, but it is also an opportunistic pathogen and one of the principal causes skin infections, myocarditis, transplant induced infections, and other nosocomial infections, that range from minor to life threatening diseases. In United States in 2017 more than 119 thousand people suffered from bloodstream S.aureus infections and nearly 20 thousand died from this condition. These numbers represent the equivalent yearly deaths induced by HIV, tuberculosis and hepatitis combined. It is also the second global cause of blood infections, and one of the principal food poisoning vectors. The incidence of these infections varies depending on the socioeconomic and legislative public health situation of each country, the population, and the health system. Also, certain groups have higher incidence such as: immuno-compromised patients and implant users. S.aureus is highly tolerant to desiccation based on its adaptability and protection mechanisms, such as the production of the molecule staphyloxanthin (STX), a membrane-bound carotenoid, that has been demonstrated to mediate fluidity on the membrane and provide antioxidant properties. The study of desiccation resistance factors such as staphyloxanthin and its ability to protect the cell by altering physically the cell membrane, can provide insight for future solutions to minimize the impact of the infections and decrease the transmissivity. This document focuses on the comparison of three strains: a) a strain that synthesizes normal levels of STX (144), b) a strain that does not synthesize carotenoids (145), and c) a strain that over-produces STX (147). We analize3 physiochemical properties (water content, cell shape, and membrane lipid packing) and 3 survival treatment experiments (normal air exposure, anaerobic conditions, and exposure to an oxidative environment induced by UV light). It was found that, after desiccation, there is a significant difference (p<0.001) between the remaining water percentage for strain the 147, with respect to 144 and 145, where 144 and 145 strains have similar remaining water percentages. Besides, there is a significant difference between the average cell area per strain (p<0.001, p<0.001, p<0.001) conserved through time, with 145 being the smallest and 147 the biggest. There is not a significant difference in size in the majority of the time points, only in 168h it can be stated that the strain didn¿t change at the same rate than the other two. We observe strong differences in the lipid phase behavior of the three strains after desiccation as evidenced from the thermotropic behavior of the CH2 asymmetric stretch wavenumber of the acyl chains. The gel to liquid-crystalline phase transition temperature shifts upwards for all the strains after desiccation, from 15 °C to 29.5, 26.5 and 24.5 °C respectively for each strain, after being desiccated, making the lipids at room temperature in gel phase. This is expected since lipids present higher packing levels in the absence of water. Also, there is an increase of the wavenumber of the normal modes of CH2, especially notable for 147, which also indicate higher packing levels. This is consistent with the previous results of water percentages and morphology that indicated higher rigidity on the membrane and less cooperativeness of 147 compared to the other strains. Meantime, 145 showed lower wavenumbers stating better membrane organization because of an increase in lipid packaging. Finally, the type of desiccation treatment had an effect on its survival, in the UV treatment the survival rate decreased one order of magnitude compared to the results obtained for the desiccation treatment in normal air conditions, while for anaerobe conditions, the same diminution of survival rate was found but 145 recovered certain survival capacity, reaching the same survival rates as the other strains. The results show that carotenoids are key in desiccation tolerance principally because they protect cells from oxidative stress. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-06T16:00:23Z |
dc.date.available.none.fl_str_mv |
2023-02-06T16:00:23Z |
dc.date.issued.none.fl_str_mv |
2023-01-18 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64711 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64711 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Grace, D., and A. Fetsch. 2018. Staphylococcus aureus ¿A Foodborne Pathogen. Staphylococcus aureus.: 3-10 Harris, L.G., S.J. Foster, and R.G. Richards. 2002. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. European Cells and Materials. 4: 39¿60. Taylor, T.A., and C.G. Unakal. 2022. NCBI Bookshelf. Staphylococcus Aureus. Foster T. Staphylococcus. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 12. Scott, E., and S.F. Bloomfield. 1990. The survival and transfer of microbial contamination via cloths, hands and utensils. Journal of Applied Bacteriology. 68: 271¿278. Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003 Mar 31;2(1):63-76. PMID: 12917803. Masalha, M., I. Borovok, R. Schreiber, Y. Aharonowitz, and G. Cohen. 2001. Analysis of transcription of the staphylococcus aureus aerobic class IB and anaerobic class III ribonucleotide reductase genes in response to oxygen. Journal of Bacteriology. 183: 7260¿7272. Tong, S.Y., J.S. Davis, E. Eichenberger, T.L. Holland, and V.G. Fowler. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews. 28: 603¿661. WHO. 2020. Resistencia a Los Antimicrobianos. World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance. Archer, N.K., M.J. Mazaitis, J.W. Costerton, J.G. Leid, M.E. Powers, and M.E. Shirtliff. 2011. staphylococcus aureusbiofilms. Virulence. 2: 445¿459. Laupland, K.B., O. Lyytikäinen, M. Sgaard, K.J. Kennedy, J.D. Knudsen, C. Ostergaard, J.C. Galbraith, L. Valiquette, G. Jacobsson, P. Collignon, and H.C. Schnheyder. 2012. The changing epidemiology of Staphylococcus aureus bloodstream infection: A multinational population-based surveillance study. Clinical Microbiology and Infection. 19: 465¿471. Dinges, M.M., P.M. Orwin, and P.M. Schlievert. 2000. Exotoxins of staphylococcus aureus. Clinical Microbiology Reviews. 13: 16¿34. Yomayusa, N., Álvarez, C. A., Hernández, P. A., Ibáñez , M., Sossa , M. P., Suárez, I. C., Chavarro, B., Escobar, J., Castro, B., Díaz , P. L., Leal , A. L., Moreno, J. E., Vanegas , N., & Gaitán , H. G. (2009). Las infecciones por Staphylococcus Aureus resistente a Meticilina son un problema de salud pública. Revista Médica Sanitas, 12(3), 8-16. OMS. 2021. Patógenos multirresistentes que son prioritarios para la OMS. OPS/OMS | Organización Panamericana de la Salud. USA CDC. 2019. Deadly staph infections still threaten the U.S. Centers for Disease Control and Prevention.https://www.cdc.gov/media/releases/2019/p0305-deadly-staph-infections.html Clements, M.O., and S.J. Foster. 1999. Stress resistance in staphylococcus aureus. Trends in Microbiology. 7: 458¿462. Van Hal, S.J., S.O. Jensen, V.L. Vaska, B.A. Espedido, D.L. Paterson, and I.B. Gosbell. 2012. Predictors of mortality in Staphylococcus aureus bacteremia. Clinical Microbiology Reviews. 25: 362¿386. Coombs, G.W., D.A. Daley, N.W.T. Yee, P. Shoby, and S. Mowlaboccus. 2022. Australian group on antimicrobial resistance (agar) australian staphylococcus aureus sepsis outcome programme (ASSOP) annual report 2020. Communicable Diseases Intelligence. 46. Kuehnert, M.J., H.A. Hill, B.A. Kupronis, J.I. Tokars, S.L. Solomon, and D.B. Jernigan. 2005. Methicillin-resistant¿staphylococcus aureushospitalizations, United States. Emerging Infectious Diseases. 11: 868¿872. Domon, H., Y. Uehara, M. Oda, H. Seo, N. Kubota, and Y. Terao. 2015. Poor survival of methicillin¿resistant staphylococcus aureus on inanimate objects in the public spaces. MicrobiologyOpen. 5: 39¿46. Maudsdotter, L., S. Imai, R.L. Ohniwa, S. Saito, and K. Morikawa. 2015. Staphylococcus aureus dry stress survivors have a heritable fitness advantage in subsequent dry exposure. Microbes and Infection. 17: 456¿461. Chaibenjawong, P., and S.J. Foster. 2010. Desiccation tolerance in Staphylococcus aureus. Archives of Microbiology. 193: 125¿135. Chan, P.F., S.J. Foster, E. Ingham, and M.O. Clements. 1998. The staphylococcus aureus alternative sigma factor ¿^b controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. Journal of Bacteriology. 180: 6082¿6089. Hill, C., P.D. Cotter, R.D. Sleator, and C.G.M. Gahan. 2002. Bacterial stress response in listeria monocytogenes: Jumping the hurdles imposed by minimal processing. International Dairy Journal. 12: 273¿283. Neely, A.N., and M.P. Maley. 2000. Survival of Enterococci and Staphylococci on hospital fabrics and plastic. Journal of Clinical Microbiology. 38: 724¿726. Cebrián, G., N. Sagarzazu, R. Pagán, S. Condón, and P. Mañas. 2010. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. International Journal of Food Microbiology. 140: 26¿33. Hernández-Jiménez, E., R. del Campo, V. Toledano, M.T. Vallejo-Cremades, A. Muñoz, C. Largo, F. Arnalich, F. García-Rio, C. Cubillos-Zapata, and E. López-Collazo. 2013. Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochemical and Biophysical Research Communications. 441: 947¿952. Mishra, N.N., G.Y. Liu, M.R. Yeaman, C.C. Nast, R.A. Proctor, J. McKinnell, and A.S. Bayer. 2011. Carotenoid-related alteration of cell membrane fluidity impacts staphylococcus aureus susceptibility to host defense peptides. Antimicrobial Agents and Chemotherapy. 55: 526¿531 Pelz, A., K.-P. Wieland, K. Putzbach, P. Hentschel, K. Albert, and F. Götz. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. Journal of Biological Chemistry. 280: 32493¿32498. López, G.-D., E. Suesca, G. Álvarez-Rivera, A.E. Rosato, E. Ibáñez, A. Cifuentes, C. Leidy, and C. Carazzone. 2021. Carotenogenesis of staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1866: 158941. Kim, S.H., and P.C. Lee. 2012. Functional expression and extension of staphylococcal Staphyloxanthin biosynthetic pathway in escherichia coli. Journal of Biological Chemistry. 287: 21575¿21583. Meléndez Granados, J. 2018. Biophysical study on the role of staphyloxanthin in promoting desiccation tolerance in Staphylococcus aureus. Beard-Pegler, M.A., E. Stubbs, and A.M. Vickery. 1988. Observations on the resistance to drying of Staphylococcal strains. Journal of Medical Microbiology. 26: 251¿255. Hoekstra, F.A., W.F. Wolkers, J. Buitink, E.A. Golovina, J.H. Crowe, and L.M. Crowe. 1997. Membrane stabilization in the dry state. Comparative Biochemistry and Physiology Part A: Physiology. 117: 335¿341. Perkins, W.D. 1986. Fourier transform-infrared spectroscopy: Part L. instrumentation. Journal of Chemical Education. 63. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
36 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/a048f26b-147d-4d89-a29f-071a2c558a2f/download https://repositorio.uniandes.edu.co/bitstreams/889eaea8-cf90-474a-8cdb-aa7c983786c4/download https://repositorio.uniandes.edu.co/bitstreams/e061ebda-49c1-4742-93f1-b9b938c634ca/download https://repositorio.uniandes.edu.co/bitstreams/1ab3cc81-609d-4425-9dbb-54546d3b4243/download https://repositorio.uniandes.edu.co/bitstreams/ba49825d-3186-4a60-8ec3-3e109dec5d81/download https://repositorio.uniandes.edu.co/bitstreams/53d73bba-622d-485e-8a0f-bd6a59e19eb9/download https://repositorio.uniandes.edu.co/bitstreams/debf642f-4a02-461c-9d8f-94c9d30a2389/download |
bitstream.checksum.fl_str_mv |
91e3efc9731e894f08320d37e31f387e 91e8dc2b0226888a80f2b93dc4c512f5 412aff4f3610115460a1ac5e7fe1fc75 4491fe1afb58beaaef41a73cf7ff2e27 5aa5c691a1ffe97abd12c2966efcb8d6 1b3887f450b2e9764835f7dc8a4caf77 7eb8af5c22b2d0f2701f07ded313824b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111842836283392 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Leidy, Chadvirtual::20623-1Wandurraga López, Lauraac2d63e0-e5dd-4ab3-b6f8-a394d1eab595600Forero Shelton, Antonio ManuBiophysics bacterial membrane2023-02-06T16:00:23Z2023-02-06T16:00:23Z2023-01-18http://hdl.handle.net/1992/64711instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Staphylococcus aureus (S.aureus) is a bacterial species that exhibits a golden coloration, given by the triterpenoid carotenoid staphyloxanthin. It is present on the skin or mucous of 20% to 30% of the human population in its natural bacterial flora, but it is also an opportunistic pathogen and one of the principal causes skin infections, myocarditis, transplant induced infections, and other nosocomial infections, that range from minor to life threatening diseases. In United States in 2017 more than 119 thousand people suffered from bloodstream S.aureus infections and nearly 20 thousand died from this condition. These numbers represent the equivalent yearly deaths induced by HIV, tuberculosis and hepatitis combined. It is also the second global cause of blood infections, and one of the principal food poisoning vectors. The incidence of these infections varies depending on the socioeconomic and legislative public health situation of each country, the population, and the health system. Also, certain groups have higher incidence such as: immuno-compromised patients and implant users. S.aureus is highly tolerant to desiccation based on its adaptability and protection mechanisms, such as the production of the molecule staphyloxanthin (STX), a membrane-bound carotenoid, that has been demonstrated to mediate fluidity on the membrane and provide antioxidant properties. The study of desiccation resistance factors such as staphyloxanthin and its ability to protect the cell by altering physically the cell membrane, can provide insight for future solutions to minimize the impact of the infections and decrease the transmissivity. This document focuses on the comparison of three strains: a) a strain that synthesizes normal levels of STX (144), b) a strain that does not synthesize carotenoids (145), and c) a strain that over-produces STX (147). We analize3 physiochemical properties (water content, cell shape, and membrane lipid packing) and 3 survival treatment experiments (normal air exposure, anaerobic conditions, and exposure to an oxidative environment induced by UV light). It was found that, after desiccation, there is a significant difference (p<0.001) between the remaining water percentage for strain the 147, with respect to 144 and 145, where 144 and 145 strains have similar remaining water percentages. Besides, there is a significant difference between the average cell area per strain (p<0.001, p<0.001, p<0.001) conserved through time, with 145 being the smallest and 147 the biggest. There is not a significant difference in size in the majority of the time points, only in 168h it can be stated that the strain didn¿t change at the same rate than the other two. We observe strong differences in the lipid phase behavior of the three strains after desiccation as evidenced from the thermotropic behavior of the CH2 asymmetric stretch wavenumber of the acyl chains. The gel to liquid-crystalline phase transition temperature shifts upwards for all the strains after desiccation, from 15 °C to 29.5, 26.5 and 24.5 °C respectively for each strain, after being desiccated, making the lipids at room temperature in gel phase. This is expected since lipids present higher packing levels in the absence of water. Also, there is an increase of the wavenumber of the normal modes of CH2, especially notable for 147, which also indicate higher packing levels. This is consistent with the previous results of water percentages and morphology that indicated higher rigidity on the membrane and less cooperativeness of 147 compared to the other strains. Meantime, 145 showed lower wavenumbers stating better membrane organization because of an increase in lipid packaging. Finally, the type of desiccation treatment had an effect on its survival, in the UV treatment the survival rate decreased one order of magnitude compared to the results obtained for the desiccation treatment in normal air conditions, while for anaerobe conditions, the same diminution of survival rate was found but 145 recovered certain survival capacity, reaching the same survival rates as the other strains. The results show that carotenoids are key in desiccation tolerance principally because they protect cells from oxidative stress.FísicoPregradoBiophysics36 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaThe role of carotenoids in the modulation of physiochemical aspects that determine Staphylococcus aureus survival under desiccationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDesiccation toleranceStaphylococcus aureusBiophysicsCarotenoidsOxidative stressStaphyloxanthinBacterial membraneSEMFTIRFísicaGrace, D., and A. Fetsch. 2018. Staphylococcus aureus ¿A Foodborne Pathogen. Staphylococcus aureus.: 3-10Harris, L.G., S.J. Foster, and R.G. Richards. 2002. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. European Cells and Materials. 4: 39¿60.Taylor, T.A., and C.G. Unakal. 2022. NCBI Bookshelf. Staphylococcus Aureus.Foster T. Staphylococcus. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 12.Scott, E., and S.F. Bloomfield. 1990. The survival and transfer of microbial contamination via cloths, hands and utensils. Journal of Applied Bacteriology. 68: 271¿278.Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003 Mar 31;2(1):63-76. PMID: 12917803.Masalha, M., I. Borovok, R. Schreiber, Y. Aharonowitz, and G. Cohen. 2001. Analysis of transcription of the staphylococcus aureus aerobic class IB and anaerobic class III ribonucleotide reductase genes in response to oxygen. Journal of Bacteriology. 183: 7260¿7272.Tong, S.Y., J.S. Davis, E. Eichenberger, T.L. Holland, and V.G. Fowler. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews. 28: 603¿661.WHO. 2020. Resistencia a Los Antimicrobianos. World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance.Archer, N.K., M.J. Mazaitis, J.W. Costerton, J.G. Leid, M.E. Powers, and M.E. Shirtliff. 2011. staphylococcus aureusbiofilms. Virulence. 2: 445¿459.Laupland, K.B., O. Lyytikäinen, M. Sgaard, K.J. Kennedy, J.D. Knudsen, C. Ostergaard, J.C. Galbraith, L. Valiquette, G. Jacobsson, P. Collignon, and H.C. Schnheyder. 2012. The changing epidemiology of Staphylococcus aureus bloodstream infection: A multinational population-based surveillance study. Clinical Microbiology and Infection. 19: 465¿471.Dinges, M.M., P.M. Orwin, and P.M. Schlievert. 2000. Exotoxins of staphylococcus aureus. Clinical Microbiology Reviews. 13: 16¿34.Yomayusa, N., Álvarez, C. A., Hernández, P. A., Ibáñez , M., Sossa , M. P., Suárez, I. C., Chavarro, B., Escobar, J., Castro, B., Díaz , P. L., Leal , A. L., Moreno, J. E., Vanegas , N., & Gaitán , H. G. (2009). Las infecciones por Staphylococcus Aureus resistente a Meticilina son un problema de salud pública. Revista Médica Sanitas, 12(3), 8-16.OMS. 2021. Patógenos multirresistentes que son prioritarios para la OMS. OPS/OMS | Organización Panamericana de la Salud.USA CDC. 2019. Deadly staph infections still threaten the U.S. Centers for Disease Control and Prevention.https://www.cdc.gov/media/releases/2019/p0305-deadly-staph-infections.htmlClements, M.O., and S.J. Foster. 1999. Stress resistance in staphylococcus aureus. Trends in Microbiology. 7: 458¿462.Van Hal, S.J., S.O. Jensen, V.L. Vaska, B.A. Espedido, D.L. Paterson, and I.B. Gosbell. 2012. Predictors of mortality in Staphylococcus aureus bacteremia. Clinical Microbiology Reviews. 25: 362¿386.Coombs, G.W., D.A. Daley, N.W.T. Yee, P. Shoby, and S. Mowlaboccus. 2022. Australian group on antimicrobial resistance (agar) australian staphylococcus aureus sepsis outcome programme (ASSOP) annual report 2020. Communicable Diseases Intelligence. 46.Kuehnert, M.J., H.A. Hill, B.A. Kupronis, J.I. Tokars, S.L. Solomon, and D.B. Jernigan. 2005. Methicillin-resistant¿staphylococcus aureushospitalizations, United States. Emerging Infectious Diseases. 11: 868¿872.Domon, H., Y. Uehara, M. Oda, H. Seo, N. Kubota, and Y. Terao. 2015. Poor survival of methicillin¿resistant staphylococcus aureus on inanimate objects in the public spaces. MicrobiologyOpen. 5: 39¿46.Maudsdotter, L., S. Imai, R.L. Ohniwa, S. Saito, and K. Morikawa. 2015. Staphylococcus aureus dry stress survivors have a heritable fitness advantage in subsequent dry exposure. Microbes and Infection. 17: 456¿461.Chaibenjawong, P., and S.J. Foster. 2010. Desiccation tolerance in Staphylococcus aureus. Archives of Microbiology. 193: 125¿135.Chan, P.F., S.J. Foster, E. Ingham, and M.O. Clements. 1998. The staphylococcus aureus alternative sigma factor ¿^b controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. Journal of Bacteriology. 180: 6082¿6089.Hill, C., P.D. Cotter, R.D. Sleator, and C.G.M. Gahan. 2002. Bacterial stress response in listeria monocytogenes: Jumping the hurdles imposed by minimal processing. International Dairy Journal. 12: 273¿283.Neely, A.N., and M.P. Maley. 2000. Survival of Enterococci and Staphylococci on hospital fabrics and plastic. Journal of Clinical Microbiology. 38: 724¿726.Cebrián, G., N. Sagarzazu, R. Pagán, S. Condón, and P. Mañas. 2010. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. International Journal of Food Microbiology. 140: 26¿33.Hernández-Jiménez, E., R. del Campo, V. Toledano, M.T. Vallejo-Cremades, A. Muñoz, C. Largo, F. Arnalich, F. García-Rio, C. Cubillos-Zapata, and E. López-Collazo. 2013. Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochemical and Biophysical Research Communications. 441: 947¿952.Mishra, N.N., G.Y. Liu, M.R. Yeaman, C.C. Nast, R.A. Proctor, J. McKinnell, and A.S. Bayer. 2011. Carotenoid-related alteration of cell membrane fluidity impacts staphylococcus aureus susceptibility to host defense peptides. Antimicrobial Agents and Chemotherapy. 55: 526¿531Pelz, A., K.-P. Wieland, K. Putzbach, P. Hentschel, K. Albert, and F. Götz. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. Journal of Biological Chemistry. 280: 32493¿32498.López, G.-D., E. Suesca, G. Álvarez-Rivera, A.E. Rosato, E. Ibáñez, A. Cifuentes, C. Leidy, and C. Carazzone. 2021. Carotenogenesis of staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1866: 158941.Kim, S.H., and P.C. Lee. 2012. Functional expression and extension of staphylococcal Staphyloxanthin biosynthetic pathway in escherichia coli. Journal of Biological Chemistry. 287: 21575¿21583.Meléndez Granados, J. 2018. Biophysical study on the role of staphyloxanthin in promoting desiccation tolerance in Staphylococcus aureus.Beard-Pegler, M.A., E. Stubbs, and A.M. Vickery. 1988. Observations on the resistance to drying of Staphylococcal strains. Journal of Medical Microbiology. 26: 251¿255.Hoekstra, F.A., W.F. Wolkers, J. Buitink, E.A. Golovina, J.H. Crowe, and L.M. Crowe. 1997. Membrane stabilization in the dry state. Comparative Biochemistry and Physiology Part A: Physiology. 117: 335¿341.Perkins, W.D. 1986. Fourier transform-infrared spectroscopy: Part L. instrumentation. Journal of Chemical Education. 63.201632471Publication29f524d9-be84-4fc7-b365-48c816849b2dvirtual::20623-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::20623-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000674044virtual::20623-1ORIGINALtesisfisica(superfinal).pdftesisfisica(superfinal).pdfTrabajo de gradoapplication/pdf3975741https://repositorio.uniandes.edu.co/bitstreams/a048f26b-147d-4d89-a29f-071a2c558a2f/download91e3efc9731e894f08320d37e31f387eMD52formatobiblioteca - Laura Wandurraga (1).pdfformatobiblioteca - Laura Wandurraga (1).pdfHIDEapplication/pdf261765https://repositorio.uniandes.edu.co/bitstreams/889eaea8-cf90-474a-8cdb-aa7c983786c4/download91e8dc2b0226888a80f2b93dc4c512f5MD53TEXTtesisfisica(superfinal).pdf.txttesisfisica(superfinal).pdf.txtExtracted texttext/plain69034https://repositorio.uniandes.edu.co/bitstreams/e061ebda-49c1-4742-93f1-b9b938c634ca/download412aff4f3610115460a1ac5e7fe1fc75MD54formatobiblioteca - Laura Wandurraga (1).pdf.txtformatobiblioteca - Laura Wandurraga (1).pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/1ab3cc81-609d-4425-9dbb-54546d3b4243/download4491fe1afb58beaaef41a73cf7ff2e27MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/ba49825d-3186-4a60-8ec3-3e109dec5d81/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILtesisfisica(superfinal).pdf.jpgtesisfisica(superfinal).pdf.jpgIM Thumbnailimage/jpeg5797https://repositorio.uniandes.edu.co/bitstreams/53d73bba-622d-485e-8a0f-bd6a59e19eb9/download1b3887f450b2e9764835f7dc8a4caf77MD55formatobiblioteca - Laura Wandurraga (1).pdf.jpgformatobiblioteca - Laura Wandurraga (1).pdf.jpgIM Thumbnailimage/jpeg15711https://repositorio.uniandes.edu.co/bitstreams/debf642f-4a02-461c-9d8f-94c9d30a2389/download7eb8af5c22b2d0f2701f07ded313824bMD571992/64711oai:repositorio.uniandes.edu.co:1992/647112024-12-04 16:42:26.303https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |