Floer-Novikov cohomology and its applications

Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bo...

Full description

Autores:
Gómez Cobos, David Santiago
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/50823
Acceso en línea:
http://hdl.handle.net/1992/50823
Palabra clave:
Teoría homológica
Conjetura de Novikov
Homología de Floer
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_48549407fb103ca920e0bfcc8a8415f7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/50823
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::14757-1Gómez Cobos, David Santiago122a9161-1e98-48bb-b9b8-ce21da0eb42e400Roland Schaffhauser, Florent MarieArias Abad, Camilo2021-08-10T18:02:20Z2021-08-10T18:02:20Z2020http://hdl.handle.net/1992/5082323237.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bounded gradient lines were of different nature. Floer found that an appropriate way to deal with these objects was the theory of pseudo-holomorphic curves developed by Gromov. The incorporation of this theory presented some problems for the compactness and transversality of the moduli space in question, specifically the appearance of unwanted pseudo-holomorphic spheres in sequences of pseudo-holomorphic curves. Floer solved these problems by imposing a condition of monotonicity on the manifold (M, w), causing his proof of Arnold's conjecture to be not general. The purpose of this document is to present the details of the construction of a more general Floer (co) -homology (Floer-Novikov cohomology)...La (co)-homología de Floer es un análogo infinito dimensional de la (co)-homología de Morse clásica, cambiando la ecuación gradiente de la función de Morse f por el gradiente del funcional de acción A definido en el espacio de lazos contráctiles. Este cambio implicó que los objetos que componen el espacio moduli de líneas gradientes acotadas fueran de distinta naturaleza. Floer encontró que una forma apropiada para tratar con estos objetos era la teoría de curvas pseudo-holomorfas desarrollada por Gromov. La incorporación de esta teoría presentó algunos problemas para la compacidad y transversalidad del espacio moduli en cuestión, concretamente la aparición de esferas pseudo-holomorfas no deseadas en sucesiones de curvas pseudo-holomorfas. Floer resolvió estos inconvenientes imponiendo una condición de monotonicidad en la variedad (M, w), provocando que su prueba de la conjetura de Arnold no sea general. El objetivo de este documento es presentar los detalles de la construcción de una (co)-homología de Floer más general (cohomología de Floer-Novikov)...Magíster en MatemáticasMaestría84 hojasapplication/pdfengUniversidad de los AndesMaestría en MatemáticasFacultad de CienciasDepartamento de MatemáticasFloer-Novikov cohomology and its applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMTeoría homológicaConjetura de NovikovHomología de FloerMatemáticas201513079Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14757-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14757-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::14757-1TEXT23237.pdf.txt23237.pdf.txtExtracted texttext/plain148002https://repositorio.uniandes.edu.co/bitstreams/49f1f0a8-1ac9-4714-9236-6a4322a73912/download3382dadd5502553e2ae565625bde4ba8MD54ORIGINAL23237.pdfapplication/pdf818506https://repositorio.uniandes.edu.co/bitstreams/f2256bd0-15a5-4e1a-af6a-1a655af9504d/download8a498bcc0166d970b465d8db8893b0faMD51THUMBNAIL23237.pdf.jpg23237.pdf.jpgIM Thumbnailimage/jpeg7500https://repositorio.uniandes.edu.co/bitstreams/d2aa1ace-33f3-4781-b8dc-f8290174b553/download2d6256446662b4b633593058c307b3bdMD551992/50823oai:repositorio.uniandes.edu.co:1992/508232024-03-13 15:17:03.327http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Floer-Novikov cohomology and its applications
title Floer-Novikov cohomology and its applications
spellingShingle Floer-Novikov cohomology and its applications
Teoría homológica
Conjetura de Novikov
Homología de Floer
Matemáticas
title_short Floer-Novikov cohomology and its applications
title_full Floer-Novikov cohomology and its applications
title_fullStr Floer-Novikov cohomology and its applications
title_full_unstemmed Floer-Novikov cohomology and its applications
title_sort Floer-Novikov cohomology and its applications
dc.creator.fl_str_mv Gómez Cobos, David Santiago
dc.contributor.advisor.none.fl_str_mv Cardona Guio, Alexander
dc.contributor.author.none.fl_str_mv Gómez Cobos, David Santiago
dc.contributor.jury.none.fl_str_mv Roland Schaffhauser, Florent Marie
Arias Abad, Camilo
dc.subject.armarc.none.fl_str_mv Teoría homológica
Conjetura de Novikov
Homología de Floer
topic Teoría homológica
Conjetura de Novikov
Homología de Floer
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bounded gradient lines were of different nature. Floer found that an appropriate way to deal with these objects was the theory of pseudo-holomorphic curves developed by Gromov. The incorporation of this theory presented some problems for the compactness and transversality of the moduli space in question, specifically the appearance of unwanted pseudo-holomorphic spheres in sequences of pseudo-holomorphic curves. Floer solved these problems by imposing a condition of monotonicity on the manifold (M, w), causing his proof of Arnold's conjecture to be not general. The purpose of this document is to present the details of the construction of a more general Floer (co) -homology (Floer-Novikov cohomology)...
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:02:20Z
dc.date.available.none.fl_str_mv 2021-08-10T18:02:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/50823
dc.identifier.pdf.none.fl_str_mv 23237.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/50823
identifier_str_mv 23237.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 84 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/49f1f0a8-1ac9-4714-9236-6a4322a73912/download
https://repositorio.uniandes.edu.co/bitstreams/f2256bd0-15a5-4e1a-af6a-1a655af9504d/download
https://repositorio.uniandes.edu.co/bitstreams/d2aa1ace-33f3-4781-b8dc-f8290174b553/download
bitstream.checksum.fl_str_mv 3382dadd5502553e2ae565625bde4ba8
8a498bcc0166d970b465d8db8893b0fa
2d6256446662b4b633593058c307b3bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134034229166080