Floer-Novikov cohomology and its applications
Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bo...
- Autores:
-
Gómez Cobos, David Santiago
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50823
- Acceso en línea:
- http://hdl.handle.net/1992/50823
- Palabra clave:
- Teoría homológica
Conjetura de Novikov
Homología de Floer
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_48549407fb103ca920e0bfcc8a8415f7 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50823 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::14757-1Gómez Cobos, David Santiago122a9161-1e98-48bb-b9b8-ce21da0eb42e400Roland Schaffhauser, Florent MarieArias Abad, Camilo2021-08-10T18:02:20Z2021-08-10T18:02:20Z2020http://hdl.handle.net/1992/5082323237.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bounded gradient lines were of different nature. Floer found that an appropriate way to deal with these objects was the theory of pseudo-holomorphic curves developed by Gromov. The incorporation of this theory presented some problems for the compactness and transversality of the moduli space in question, specifically the appearance of unwanted pseudo-holomorphic spheres in sequences of pseudo-holomorphic curves. Floer solved these problems by imposing a condition of monotonicity on the manifold (M, w), causing his proof of Arnold's conjecture to be not general. The purpose of this document is to present the details of the construction of a more general Floer (co) -homology (Floer-Novikov cohomology)...La (co)-homología de Floer es un análogo infinito dimensional de la (co)-homología de Morse clásica, cambiando la ecuación gradiente de la función de Morse f por el gradiente del funcional de acción A definido en el espacio de lazos contráctiles. Este cambio implicó que los objetos que componen el espacio moduli de líneas gradientes acotadas fueran de distinta naturaleza. Floer encontró que una forma apropiada para tratar con estos objetos era la teoría de curvas pseudo-holomorfas desarrollada por Gromov. La incorporación de esta teoría presentó algunos problemas para la compacidad y transversalidad del espacio moduli en cuestión, concretamente la aparición de esferas pseudo-holomorfas no deseadas en sucesiones de curvas pseudo-holomorfas. Floer resolvió estos inconvenientes imponiendo una condición de monotonicidad en la variedad (M, w), provocando que su prueba de la conjetura de Arnold no sea general. El objetivo de este documento es presentar los detalles de la construcción de una (co)-homología de Floer más general (cohomología de Floer-Novikov)...Magíster en MatemáticasMaestría84 hojasapplication/pdfengUniversidad de los AndesMaestría en MatemáticasFacultad de CienciasDepartamento de MatemáticasFloer-Novikov cohomology and its applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMTeoría homológicaConjetura de NovikovHomología de FloerMatemáticas201513079Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14757-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14757-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::14757-1TEXT23237.pdf.txt23237.pdf.txtExtracted texttext/plain148002https://repositorio.uniandes.edu.co/bitstreams/49f1f0a8-1ac9-4714-9236-6a4322a73912/download3382dadd5502553e2ae565625bde4ba8MD54ORIGINAL23237.pdfapplication/pdf818506https://repositorio.uniandes.edu.co/bitstreams/f2256bd0-15a5-4e1a-af6a-1a655af9504d/download8a498bcc0166d970b465d8db8893b0faMD51THUMBNAIL23237.pdf.jpg23237.pdf.jpgIM Thumbnailimage/jpeg7500https://repositorio.uniandes.edu.co/bitstreams/d2aa1ace-33f3-4781-b8dc-f8290174b553/download2d6256446662b4b633593058c307b3bdMD551992/50823oai:repositorio.uniandes.edu.co:1992/508232024-03-13 15:17:03.327http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Floer-Novikov cohomology and its applications |
title |
Floer-Novikov cohomology and its applications |
spellingShingle |
Floer-Novikov cohomology and its applications Teoría homológica Conjetura de Novikov Homología de Floer Matemáticas |
title_short |
Floer-Novikov cohomology and its applications |
title_full |
Floer-Novikov cohomology and its applications |
title_fullStr |
Floer-Novikov cohomology and its applications |
title_full_unstemmed |
Floer-Novikov cohomology and its applications |
title_sort |
Floer-Novikov cohomology and its applications |
dc.creator.fl_str_mv |
Gómez Cobos, David Santiago |
dc.contributor.advisor.none.fl_str_mv |
Cardona Guio, Alexander |
dc.contributor.author.none.fl_str_mv |
Gómez Cobos, David Santiago |
dc.contributor.jury.none.fl_str_mv |
Roland Schaffhauser, Florent Marie Arias Abad, Camilo |
dc.subject.armarc.none.fl_str_mv |
Teoría homológica Conjetura de Novikov Homología de Floer |
topic |
Teoría homológica Conjetura de Novikov Homología de Floer Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Floer (co) -homology is an infinite dimensional analog of classical Morse (co) -homology, changing the gradient equation of the Morse function f by the gradient of the action functional A defined in the contractible loop space. This change implied that the objects that make up the moduli space of bounded gradient lines were of different nature. Floer found that an appropriate way to deal with these objects was the theory of pseudo-holomorphic curves developed by Gromov. The incorporation of this theory presented some problems for the compactness and transversality of the moduli space in question, specifically the appearance of unwanted pseudo-holomorphic spheres in sequences of pseudo-holomorphic curves. Floer solved these problems by imposing a condition of monotonicity on the manifold (M, w), causing his proof of Arnold's conjecture to be not general. The purpose of this document is to present the details of the construction of a more general Floer (co) -homology (Floer-Novikov cohomology)... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:02:20Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:02:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50823 |
dc.identifier.pdf.none.fl_str_mv |
23237.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50823 |
identifier_str_mv |
23237.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
84 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/49f1f0a8-1ac9-4714-9236-6a4322a73912/download https://repositorio.uniandes.edu.co/bitstreams/f2256bd0-15a5-4e1a-af6a-1a655af9504d/download https://repositorio.uniandes.edu.co/bitstreams/d2aa1ace-33f3-4781-b8dc-f8290174b553/download |
bitstream.checksum.fl_str_mv |
3382dadd5502553e2ae565625bde4ba8 8a498bcc0166d970b465d8db8893b0fa 2d6256446662b4b633593058c307b3bd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134034229166080 |