Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales
La separación de enantiómeros ha sido un constante problema para la química analítica debido a la similitud de los analitos, no obstante, son numerosos los ejemplos que establecen la importancia de lograr dicha resolución. Ante esto, el presente trabajo llevó a cabo la resolución de los enantiómeros...
- Autores:
-
Benavides Vesga, Mariana
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75213
- Acceso en línea:
- https://hdl.handle.net/1992/75213
- Palabra clave:
- Electroforesis
Enantiomeros
EOF
Resolución
Química
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 International
id |
UNIANDES2_484a48d47a1da3049f4f58f453a1fe04 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75213 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
title |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
spellingShingle |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales Electroforesis Enantiomeros EOF Resolución Química |
title_short |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
title_full |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
title_fullStr |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
title_full_unstemmed |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
title_sort |
Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales |
dc.creator.fl_str_mv |
Benavides Vesga, Mariana |
dc.contributor.advisor.none.fl_str_mv |
Carazzone, Chiara |
dc.contributor.author.none.fl_str_mv |
Benavides Vesga, Mariana |
dc.contributor.jury.none.fl_str_mv |
Cortés Montañez, María Teresa Portilla Salinas, Jaime Antonio |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.spa.fl_str_mv |
Electroforesis |
topic |
Electroforesis Enantiomeros EOF Resolución Química |
dc.subject.keyword.none.fl_str_mv |
Enantiomeros EOF Resolución |
dc.subject.themes.spa.fl_str_mv |
Química |
description |
La separación de enantiómeros ha sido un constante problema para la química analítica debido a la similitud de los analitos, no obstante, son numerosos los ejemplos que establecen la importancia de lograr dicha resolución. Ante esto, el presente trabajo llevó a cabo la resolución de los enantiómeros del triptófano y de la duloxetina mediante electroforesis capilar utilizando como selectores quirales los oligosacáridos cíclicos conocidos como ciclodextrinas (α, β, γ). Partiendo de un buffer de H3PO4/NaH2PO4 0.1M a un pH 2.5, la optimización del método se realizó ajustando parámetros como el voltaje, la temperatura, el método de inyección y los parámetros de detección. Se establece que las condiciones óptimas para los enantiómeros L/D del triptófano son 9kv de corrida, 30°C, inyección electrocinética (7kv) y una detección a 220 nm. Utilizando la α-CD a una concentración de 4% se logra una máxima resolución de 3.64, obteniendo el enantiómero L con un menor tiempo de migración. Por otro lado, el método para la duloxetina solo cambia la inyección por hidrodinámica (50mmbar). La resolución del analito fue posible utilizando la HP-β-CD (7%), la cual fue previamente funcionalizada desde β-CD mediante una reacción de eterificación con oxido de propileno para aumentar su solubilidad. El estudio permitió una resolución suficiente de ambos analitos (>1.5) en tiempos cortos de análisis y se pudo corroborar la relevancia que tiene que el tamaño del analito y el selector escogido sean similares para que se propicien las interacciones necesarias para la separación. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-29T18:47:52Z |
dc.date.available.none.fl_str_mv |
2024-11-29T18:47:52Z |
dc.date.issued.none.fl_str_mv |
2024-06-04 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75213 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75213 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M. L. Chiral Capillary Electrophoresis. Trends Analyt. https://doi.org/10.1016/j.trac.2020.115807. Fanali, S. Enantioselective Determination by Capillary Electrophoresis with Cyclodextrins as Chiral Selectors. J. Chromatogr. A 2000, 875 (1–2), 89-122.https://doi.org/10.1016/s0021-9673(99)01309-6. Scriba, G. K. E. Chiral Separations in Capillary Electrophoresis. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2015. Fanali, S.; Chankvetadze, B. Some Thoughts about Enantioseparations in Capillary Electrophoresis. Electrophoresis 2019, 40 (18–19), 2420–2437. https://doi.org/10.1002/elps.201900144. Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis, 1st ed.; John Wiley & Sons: Chichester, England, 2000. Fanali, S. Identification of Chiral Drug Isomers by Capillary Electrophoresis. J. Chromatogr. A 1996, 735 (1–2), 77–121. https://doi.org/10.1016/0021-9673(95)01327-x. Chankvetadze, B.; Blaschke, G. Enantioseparations in Capillary Electromigration Techniques: Recent Developments and Future Trends. J. Chromatogr. A 2001, 906 (1–2), 309363. https://doi.org/10.1016/s0021-9673(00)01124-9. Yu, R. B.; Quirino, J. P. Chiral Selectors in Capillary Electrophoresis: Trends during 2017-2018. Molecules 2019, 24 (6), 1135. https://doi.org/10.3390/molecules24061135. Fanali, S. Controlling Enantioselectivity in Chiral Capillary Electrophoresis with Inclusion–Complexation. J.Chromatogr. A 1997, 792 (1–2), 227–267. https://doi.org/10.1016/s0021-9673(97)00809-1. Fanali, S.; Catarcini, P.; Blaschke, G.; Chankvetadze, B. Enantioseparations by Capillary Electrochromatography. Electrophoresis 2001, 22 (15), 3131–3151. https://doi.org/10.1002/1522-2683(200109)22:15<3131::aid-elps3131>3.0.co;2-s. Desiderio, C.; Fanali, S. Use of Negatively Charged Sulfobutyl Ether-β-Cyclodextrin for Enantiomeric Separation by Capillary Electrophoresis. J. Chromatogr. A 1995, 716 (1–2), 183-196. https://doi.org/10.1016/0021-9673(95)00550-7. Fanali, S. Chiral Separations by CE Employing CDs. Electrophoresis 2009, 30 (S1). https://doi.org/10.1002/elps.200900056. Herrero, M.; Simó, C.; García-Cañas, V.; Fanali, S.; Cifuentes, A. Chiral Capillary Electrophoresis in Food Analysis. Electrophoresis 2010, 31 (13), 2106–2114. https://doi.org/10.1002/elps.200900770. Chiral Separations by Capillary Electrophoresis; Van Eeckhaut, A., Michotte, Y., Eds.; CRC Press: London, England, 2019. Portillo, A.; Berthod, A.; Armstrong, D. W. Cyclodextrin-Mediated High-Performance Liquid Chromatography, Gas Chromatography and Capillary Electrophoresis Enantiomeric Separations. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022. Vespalec, R.; Boček, P. Chiral Separations by Capillary Electrophoresis: Present State of the Art. Electrophoresis 1994, 15 (1), 755–762. https://doi.org/10.1002/elps.11501501105. Chankvetadze, B.; Endresz, G.; Blaschke, G. About Some Aspects of the Use of Charged Cyclodextrins for Capillary Electrophoresis Enantioseparation. Electrophoresis 1994, 15 (1), 804-807. https://doi.org/10.1002/elps.11501501113. Chankvetadze, B. Enantioseparations by Using Capillary Electrophoretic Techniques. J. Chromatogr. A 2007, 1168 (1–2), 45–70. https://doi.org/10.1016/j.chroma.2007.08.008. Chankvetadze, B.; Endresz, G.; Blaschke, G. Charged Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis. Chem. Soc. Rev. 1996, 25 (2), 141. https://doi.org/10.1039/cs9962500141. Capillary Electrophoresis: Theory and Practice; Grossman, P. D., Colburn, J. C., Eds.; Academic Press: San Diego, CA, 1992. Calabuig, A. M. P. SÍNTESIS Y CARACTERIZACIÓN DE -TIOCICLODEXTRINA, Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Santiago de Compostela, Galicia, 2016. González, F. S. CICLODEXTRINAS: HOSPEDADORES MOLECULARES PARA EL MUNDO CONTEMPORÁNEO, 2017. Fanali, S.; Boček, P. Enantiomer Resolution by Using Capillary Zone Electrophoresis: Resolution of Racemic Tryptophan and Determination of the Enantiomer Composition of Commercial Pharmaceutical Epinephrine. Electrophoresis 1990, 11 (9), 757–760. https://doi.org/10.1002/elps.1150110913. Chen, Z. L.; Warren, C. R.; Adams, M. A. Separation of Amino Acids in Plant Tissue Extracts by Capillary Zone Electrophoresis with Indirect UV Detection Using Aromatic Carboxylates as Background Electrolytes. Chromatographia 2000, 51 (3–4), 180–186. https://doi.org/10.1007/bf02490562. Denoroy, L.; Parrot, S. Analysis of Amino Acids and Related Compounds by Capillary Electrophoresis. Sep. Purif. Rev. 2017, 46 (2), 108–151. https://doi.org/10.1080/15422119.2016.1212378. Omar, M. M. A.; Elbashir, A. A.; Schmitz, O. J. Capillary Electrophoresis Method with UV-Detection for Analysis of Free Amino Acids Concentrations in Food. Food Chem. 2017, 214, 300–307. https://doi.org/10.1016/j.foodchem.2016.07.060. Salaün, M.; Charpentier, S. Rapid Analysis of Organic and Amino Acids by Capillary Electrophoresis: Application to Glutamine and Arginine Contents in an Ornamental Shrub. J. Plant Physiol. 2001, 158 (11), 1381–1386. https://doi.org/10.1078/0176-1617-00502. Pérez-Míguez, R.; Salido-Fortuna, S.; Castro-Puyana, M.; Marina, M. L. Advances in the Determination of Nonprotein Amino Acids in Foods and Biological Samples by Capillary Electrophoresis. Crit. Rev. Anal. Chem. 2019, 49 (5), 459–475. https://doi.org/10.1080/10408347.2018.1546113. Smith, J. T. Developments in Amino Acid Analysis Using Capillary Electrophoresis. Electrophoresis 1997, 18 (12–13), 2377–2392. https://doi.org/10.1002/elps.1150181228. Timerbaev, A. R. Element Speciation Analysis Using Capillary Electrophoresis: Twenty Years of Development and Applications. Chem. Rev. 2013, 113 (1), 778–812. https://doi.org/10.1021/cr300199v. Fanali, S. Separation of Optical Isomers by Capillary Zone Electrophoresis Based on Host-Guest Complexation with Cyclodextrins. J. Chromatogr. A 1989, 474 (2), 441–446. https://doi.org/10.1016/s0021-9673(01)93941-x. Fanali, S. Use of Cyclodextrins in Capillary Zone Electrophoresis. J. Chromatogr. A 1991, 545 (2), 437–444. https://doi.org/10.1016/s0021-9673(01)88738-0. Fanali, S.; Aturki, Z. Use of Cyclodextrins in Capillary Electrophoresis for the Chiral Resolution of Some 2-Arylpropionic Acid Non-Steroidal Anti-Inflammatory Drugs. J. Chromatogr. A 1995, 694 (1), 297–305. https://doi.org/10.1016/0021-9673(94)00945-6. Bingcheng, L.; Xiaofeng, Z.; Epperlein, U.; Schwierskott, M.; Schlunk, R.; Koppenhoefer, B. Separation of Enantiomers of Drugs by Capillary Electrophoresis, Part 6. Hydroxypropyl-β-Cyclodextrin as Chiral Solvating Agent. J. High Resolut. Chromatogr. 1998, 21 (4), 215–224 https://doi.org/10.1002/(sici)1521-4168(19980401)21:4<215::aid-jhrc215>3.0.co;2-2. Sánchez-López, E.; Montealegre, C.; Marina, M. L.; Crego, A. L. Development of Chiral Methodologies by Capillary Electrophoresis with Ultraviolet and Mass Spectrometry Detection for Duloxetine Analysis in Pharmaceutical Formulations. J. Chromatogr. A 2014, 1363, 356–362. https://doi.org/10.1016/j.chroma.2014.07.038. Pitha, J.; Pitha, J. Amorphous Water-Soluble Derivatives of Cyclodextrins: Nontoxic Dissolution Enhancing Excipients. J. Pharm. Sci. 1985, 74 (9), 987–990. https://doi.org/10.1002/jps.2600740916. Pitha, J.; Trinadha Rao, C.; Lindberg, B.; Seffers, P. Distribution of Substituents in 2-Hydroxypropyl Ethers of Cyclomaltoheptaose. Carbohydr. Res. 1990, 200, 429–435. https://doi.org/10.1016/0008-6215(90)84208-c. Pitha, J.; Milecki, J.; Fales, H.; Pannell, L.; Uekama, K. Hydroxypropyl-β-Cyclodextrin: Preparation and Characterization; Effects on Solubility of Drugs. Int. J. Pharm. 1986, 29 (1), 73–82. https://doi.org/10.1016/0378-5173(86)90201-2. Kalydi, E.; Malanga, M.; Nielsen, T. T.; Wimmer, R.; Béni, S. Solving the Puzzle of 2-Hydroxypropyl β-Cyclodextrin: Detailed Assignment of the Substituent Distribution by NMR Spectroscopy. Carbohydr. Polym. 2024, 338 (122167), 122167. https://doi.org/10.1016/j.carbpol.2024.122167. Ali, S. M.; Maheshwari, A.; Asmat, F.; Koketsu, M. Complexation of Enalapril Maleate with Beta-Cyclodextrin: NMR Spectroscopic Study in Solution. Quim. Nova 2006, 29 (4), 685–688. https://doi.org/10.1590/s0100-40422006000400011. Sun, L.-B.; Shen, J.; Lu, F.; Liu, X.-D.; Zhu, L.; Liu, X.-Q. Fabrication of Solid Strong Bases with a Molecular-Level Dispersion of Lithium Sites and High Basic Catalytic Activity. Chem. Commun. (Camb.) 2014, 50 (77), 11299–11302. https://doi.org/10.1039/c4cc04074k. Lakkakula, J. R.; Krause, R. W. M.; Divakaran, D.; Barage, S.; Srivastava, R. 5-Fu Inclusion Complex Capped Gold Nanoparticles for Breast Cancer Therapy. J. Mol. Liq. 2021, 341 (117262), 117262. https://doi.org/10.1016/j.molliq.2021.117262. Desai, C.; Prabhakar, B. Nano-Amorphous Composites of Cilostazol–HP-β-CD Inclusion Complexes: Physicochemical Characterization, Structure Elucidation, Thermodynamic Studies and in Vitro Evaluation. J. Incl. Phenom. Macrocycl. Chem. 2015, 81 (1–2), 175–191. https://doi.org/10.1007/s10847-014-0447-x |
dc.rights.en.fl_str_mv |
Attribution-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
46 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Química |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Química |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/74811b80-d55d-4974-819b-d3b7a51fe2b2/download https://repositorio.uniandes.edu.co/bitstreams/8956c118-3be0-4aa9-afc8-6ccbc1e74698/download https://repositorio.uniandes.edu.co/bitstreams/4b82f090-6a7f-425a-8954-34665f6560cd/download https://repositorio.uniandes.edu.co/bitstreams/27495bed-eb86-46fb-94b0-581e524da73b/download https://repositorio.uniandes.edu.co/bitstreams/54a13f5e-ec47-49bd-b9cd-9ef4f5993c16/download https://repositorio.uniandes.edu.co/bitstreams/5db762d7-e811-4e5e-b00c-0de26ff6f0aa/download https://repositorio.uniandes.edu.co/bitstreams/07fae087-cb46-49fd-94d8-c98f3adf56bb/download https://repositorio.uniandes.edu.co/bitstreams/852e64e2-fe81-4c49-87a6-081f5f85d4f1/download |
bitstream.checksum.fl_str_mv |
e021e27cf9d3ded9e64ee9b2b0efdda0 88849155298e3cab57ba820fed5ca7f4 f7d494f61e544413a13e6ba1da2089cd ae9e573a68e7f92501b6913cc846c39f 6344ac03a081044c15fc073e0128bf4c 9701e9bf4434907d5321d8feebc0a03c f8fd3613cf41d21d5a6e205c6b41cff8 14afe8aac7844da51bcdc4acf8dfa7e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159187844071424 |
spelling |
Carazzone, Chiaravirtual::20153-1Benavides Vesga, MarianaCortés Montañez, María Teresavirtual::20154-1Portilla Salinas, Jaime Antoniovirtual::20155-1Facultad de Ciencias2024-11-29T18:47:52Z2024-11-29T18:47:52Z2024-06-04https://hdl.handle.net/1992/75213instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La separación de enantiómeros ha sido un constante problema para la química analítica debido a la similitud de los analitos, no obstante, son numerosos los ejemplos que establecen la importancia de lograr dicha resolución. Ante esto, el presente trabajo llevó a cabo la resolución de los enantiómeros del triptófano y de la duloxetina mediante electroforesis capilar utilizando como selectores quirales los oligosacáridos cíclicos conocidos como ciclodextrinas (α, β, γ). Partiendo de un buffer de H3PO4/NaH2PO4 0.1M a un pH 2.5, la optimización del método se realizó ajustando parámetros como el voltaje, la temperatura, el método de inyección y los parámetros de detección. Se establece que las condiciones óptimas para los enantiómeros L/D del triptófano son 9kv de corrida, 30°C, inyección electrocinética (7kv) y una detección a 220 nm. Utilizando la α-CD a una concentración de 4% se logra una máxima resolución de 3.64, obteniendo el enantiómero L con un menor tiempo de migración. Por otro lado, el método para la duloxetina solo cambia la inyección por hidrodinámica (50mmbar). La resolución del analito fue posible utilizando la HP-β-CD (7%), la cual fue previamente funcionalizada desde β-CD mediante una reacción de eterificación con oxido de propileno para aumentar su solubilidad. El estudio permitió una resolución suficiente de ambos analitos (>1.5) en tiempos cortos de análisis y se pudo corroborar la relevancia que tiene que el tamaño del analito y el selector escogido sean similares para que se propicien las interacciones necesarias para la separación.The separation of enantiomers has been a persistent problem for analytical chemistry due to the similarity of the analytes; however, numerous examples highlight the importance of achieving such resolution. Considering this, the present study carried out the resolution of the enantiomers of tryptophan and duloxetine through capillary electrophoresis, using cyclodextrins (α, β, γ) as chiral selectors. With a 0.1M NaH2PO4 buffer adjusted to pH 2.5 with 0.1M H3PO4, the optimization of the method was performed by adjusting parameters such as voltage, temperature, injection, and detection parameters. The optimal conditions for the L/D enantiomers of tryptophan were established to be a running voltage of 9 kV, temperature of 30°C, electrokinetic injection (7 kV), and detection at 220 nm. Using α-CD at a concentration of 4%, a maximum resolution of 3.64 was achieved, with the L-enantiomer exhibiting a shorter migration time. On the other hand, the method for duloxetine only changed the injection to hydrodynamic (50 mbar), and to achieve analyte separation, it was necessary to functionalize β-CD into HP-β-CD through an etherification reaction with propylene oxide to increase its solubility. With the mentioned conditions and the modified selector, a maximum resolution of 1.63 was obtained with 7% HP-β-CD. The study allowed for sufficient resolution of both analytes (>1.5) in short time and stated the relevance of the size of the analyte and the chosen selector that must be somewhat similar to promote the necessary interactions for separation.PregradoLaboratorio de técnicas analíticas avanzadas en productos naturales (LATNAP)46 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quiralesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPElectroforesisEnantiomerosEOFResoluciónQuímicaBernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M. L. Chiral Capillary Electrophoresis. Trends Analyt. https://doi.org/10.1016/j.trac.2020.115807.Fanali, S. Enantioselective Determination by Capillary Electrophoresis with Cyclodextrins as Chiral Selectors. J. Chromatogr. A 2000, 875 (1–2), 89-122.https://doi.org/10.1016/s0021-9673(99)01309-6.Scriba, G. K. E. Chiral Separations in Capillary Electrophoresis. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2015.Fanali, S.; Chankvetadze, B. Some Thoughts about Enantioseparations in Capillary Electrophoresis. Electrophoresis 2019, 40 (18–19), 2420–2437. https://doi.org/10.1002/elps.201900144.Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis, 1st ed.; John Wiley & Sons: Chichester, England, 2000.Fanali, S. Identification of Chiral Drug Isomers by Capillary Electrophoresis. J. Chromatogr. A 1996, 735 (1–2), 77–121. https://doi.org/10.1016/0021-9673(95)01327-x.Chankvetadze, B.; Blaschke, G. Enantioseparations in Capillary Electromigration Techniques: Recent Developments and Future Trends. J. Chromatogr. A 2001, 906 (1–2), 309363. https://doi.org/10.1016/s0021-9673(00)01124-9.Yu, R. B.; Quirino, J. P. Chiral Selectors in Capillary Electrophoresis: Trends during 2017-2018. Molecules 2019, 24 (6), 1135. https://doi.org/10.3390/molecules24061135.Fanali, S. Controlling Enantioselectivity in Chiral Capillary Electrophoresis with Inclusion–Complexation. J.Chromatogr. A 1997, 792 (1–2), 227–267. https://doi.org/10.1016/s0021-9673(97)00809-1.Fanali, S.; Catarcini, P.; Blaschke, G.; Chankvetadze, B. Enantioseparations by Capillary Electrochromatography. Electrophoresis 2001, 22 (15), 3131–3151. https://doi.org/10.1002/1522-2683(200109)22:15<3131::aid-elps3131>3.0.co;2-s.Desiderio, C.; Fanali, S. Use of Negatively Charged Sulfobutyl Ether-β-Cyclodextrin for Enantiomeric Separation by Capillary Electrophoresis. J. Chromatogr. A 1995, 716 (1–2), 183-196. https://doi.org/10.1016/0021-9673(95)00550-7.Fanali, S. Chiral Separations by CE Employing CDs. Electrophoresis 2009, 30 (S1). https://doi.org/10.1002/elps.200900056.Herrero, M.; Simó, C.; García-Cañas, V.; Fanali, S.; Cifuentes, A. Chiral Capillary Electrophoresis in Food Analysis. Electrophoresis 2010, 31 (13), 2106–2114. https://doi.org/10.1002/elps.200900770.Chiral Separations by Capillary Electrophoresis; Van Eeckhaut, A., Michotte, Y., Eds.; CRC Press: London, England, 2019.Portillo, A.; Berthod, A.; Armstrong, D. W. Cyclodextrin-Mediated High-Performance Liquid Chromatography, Gas Chromatography and Capillary Electrophoresis Enantiomeric Separations. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022.Vespalec, R.; Boček, P. Chiral Separations by Capillary Electrophoresis: Present State of the Art. Electrophoresis 1994, 15 (1), 755–762. https://doi.org/10.1002/elps.11501501105.Chankvetadze, B.; Endresz, G.; Blaschke, G. About Some Aspects of the Use of Charged Cyclodextrins for Capillary Electrophoresis Enantioseparation. Electrophoresis 1994, 15 (1), 804-807. https://doi.org/10.1002/elps.11501501113.Chankvetadze, B. Enantioseparations by Using Capillary Electrophoretic Techniques. J. Chromatogr. A 2007, 1168 (1–2), 45–70. https://doi.org/10.1016/j.chroma.2007.08.008.Chankvetadze, B.; Endresz, G.; Blaschke, G. Charged Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis. Chem. Soc. Rev. 1996, 25 (2), 141. https://doi.org/10.1039/cs9962500141.Capillary Electrophoresis: Theory and Practice; Grossman, P. D., Colburn, J. C., Eds.; Academic Press: San Diego, CA, 1992.Calabuig, A. M. P. SÍNTESIS Y CARACTERIZACIÓN DE -TIOCICLODEXTRINA, Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Santiago de Compostela, Galicia, 2016.González, F. S. CICLODEXTRINAS: HOSPEDADORES MOLECULARES PARA EL MUNDO CONTEMPORÁNEO, 2017.Fanali, S.; Boček, P. Enantiomer Resolution by Using Capillary Zone Electrophoresis: Resolution of Racemic Tryptophan and Determination of the Enantiomer Composition of Commercial Pharmaceutical Epinephrine. Electrophoresis 1990, 11 (9), 757–760. https://doi.org/10.1002/elps.1150110913.Chen, Z. L.; Warren, C. R.; Adams, M. A. Separation of Amino Acids in Plant Tissue Extracts by Capillary Zone Electrophoresis with Indirect UV Detection Using Aromatic Carboxylates as Background Electrolytes. Chromatographia 2000, 51 (3–4), 180–186. https://doi.org/10.1007/bf02490562.Denoroy, L.; Parrot, S. Analysis of Amino Acids and Related Compounds by Capillary Electrophoresis. Sep. Purif. Rev. 2017, 46 (2), 108–151. https://doi.org/10.1080/15422119.2016.1212378.Omar, M. M. A.; Elbashir, A. A.; Schmitz, O. J. Capillary Electrophoresis Method with UV-Detection for Analysis of Free Amino Acids Concentrations in Food. Food Chem. 2017, 214, 300–307. https://doi.org/10.1016/j.foodchem.2016.07.060.Salaün, M.; Charpentier, S. Rapid Analysis of Organic and Amino Acids by Capillary Electrophoresis: Application to Glutamine and Arginine Contents in an Ornamental Shrub. J. Plant Physiol. 2001, 158 (11), 1381–1386. https://doi.org/10.1078/0176-1617-00502.Pérez-Míguez, R.; Salido-Fortuna, S.; Castro-Puyana, M.; Marina, M. L. Advances in the Determination of Nonprotein Amino Acids in Foods and Biological Samples by Capillary Electrophoresis. Crit. Rev. Anal. Chem. 2019, 49 (5), 459–475. https://doi.org/10.1080/10408347.2018.1546113.Smith, J. T. Developments in Amino Acid Analysis Using Capillary Electrophoresis. Electrophoresis 1997, 18 (12–13), 2377–2392. https://doi.org/10.1002/elps.1150181228.Timerbaev, A. R. Element Speciation Analysis Using Capillary Electrophoresis: Twenty Years of Development and Applications. Chem. Rev. 2013, 113 (1), 778–812. https://doi.org/10.1021/cr300199v.Fanali, S. Separation of Optical Isomers by Capillary Zone Electrophoresis Based on Host-Guest Complexation with Cyclodextrins. J. Chromatogr. A 1989, 474 (2), 441–446. https://doi.org/10.1016/s0021-9673(01)93941-x.Fanali, S. Use of Cyclodextrins in Capillary Zone Electrophoresis. J. Chromatogr. A 1991, 545 (2), 437–444. https://doi.org/10.1016/s0021-9673(01)88738-0.Fanali, S.; Aturki, Z. Use of Cyclodextrins in Capillary Electrophoresis for the Chiral Resolution of Some 2-Arylpropionic Acid Non-Steroidal Anti-Inflammatory Drugs. J. Chromatogr. A 1995, 694 (1), 297–305. https://doi.org/10.1016/0021-9673(94)00945-6.Bingcheng, L.; Xiaofeng, Z.; Epperlein, U.; Schwierskott, M.; Schlunk, R.; Koppenhoefer, B. Separation of Enantiomers of Drugs by Capillary Electrophoresis, Part 6. Hydroxypropyl-β-Cyclodextrin as Chiral Solvating Agent. J. High Resolut. Chromatogr. 1998, 21 (4), 215–224 https://doi.org/10.1002/(sici)1521-4168(19980401)21:4<215::aid-jhrc215>3.0.co;2-2.Sánchez-López, E.; Montealegre, C.; Marina, M. L.; Crego, A. L. Development of Chiral Methodologies by Capillary Electrophoresis with Ultraviolet and Mass Spectrometry Detection for Duloxetine Analysis in Pharmaceutical Formulations. J. Chromatogr. A 2014, 1363, 356–362. https://doi.org/10.1016/j.chroma.2014.07.038.Pitha, J.; Pitha, J. Amorphous Water-Soluble Derivatives of Cyclodextrins: Nontoxic Dissolution Enhancing Excipients. J. Pharm. Sci. 1985, 74 (9), 987–990. https://doi.org/10.1002/jps.2600740916.Pitha, J.; Trinadha Rao, C.; Lindberg, B.; Seffers, P. Distribution of Substituents in 2-Hydroxypropyl Ethers of Cyclomaltoheptaose. Carbohydr. Res. 1990, 200, 429–435. https://doi.org/10.1016/0008-6215(90)84208-c.Pitha, J.; Milecki, J.; Fales, H.; Pannell, L.; Uekama, K. Hydroxypropyl-β-Cyclodextrin: Preparation and Characterization; Effects on Solubility of Drugs. Int. J. Pharm. 1986, 29 (1), 73–82. https://doi.org/10.1016/0378-5173(86)90201-2.Kalydi, E.; Malanga, M.; Nielsen, T. T.; Wimmer, R.; Béni, S. Solving the Puzzle of 2-Hydroxypropyl β-Cyclodextrin: Detailed Assignment of the Substituent Distribution by NMR Spectroscopy. Carbohydr. Polym. 2024, 338 (122167), 122167. https://doi.org/10.1016/j.carbpol.2024.122167.Ali, S. M.; Maheshwari, A.; Asmat, F.; Koketsu, M. Complexation of Enalapril Maleate with Beta-Cyclodextrin: NMR Spectroscopic Study in Solution. Quim. Nova 2006, 29 (4), 685–688. https://doi.org/10.1590/s0100-40422006000400011.Sun, L.-B.; Shen, J.; Lu, F.; Liu, X.-D.; Zhu, L.; Liu, X.-Q. Fabrication of Solid Strong Bases with a Molecular-Level Dispersion of Lithium Sites and High Basic Catalytic Activity. Chem. Commun. (Camb.) 2014, 50 (77), 11299–11302. https://doi.org/10.1039/c4cc04074k.Lakkakula, J. R.; Krause, R. W. M.; Divakaran, D.; Barage, S.; Srivastava, R. 5-Fu Inclusion Complex Capped Gold Nanoparticles for Breast Cancer Therapy. J. Mol. Liq. 2021, 341 (117262), 117262. https://doi.org/10.1016/j.molliq.2021.117262.Desai, C.; Prabhakar, B. Nano-Amorphous Composites of Cilostazol–HP-β-CD Inclusion Complexes: Physicochemical Characterization, Structure Elucidation, Thermodynamic Studies and in Vitro Evaluation. J. Incl. Phenom. Macrocycl. Chem. 2015, 81 (1–2), 175–191. https://doi.org/10.1007/s10847-014-0447-x202020697Publicationhttps://scholar.google.es/citations?user=dVoSCGkAAAAJvirtual::20153-1https://scholar.google.es/citations?user=rvM48UEAAAAJvirtual::20154-10000-0002-9791-5762virtual::20153-10000-0002-7475-2083virtual::20154-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001527902virtual::20153-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000281204virtual::20154-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000370380virtual::20155-19e48e55a-f420-4196-b0f3-211822d024d7virtual::20153-19e48e55a-f420-4196-b0f3-211822d024d7virtual::20153-1113fd683-fc5b-4ead-8736-82763a221532virtual::20154-115cce969-be9e-4320-94bc-85afca78cca4virtual::20155-1113fd683-fc5b-4ead-8736-82763a221532virtual::20154-115cce969-be9e-4320-94bc-85afca78cca4virtual::20155-1ORIGINALAutorizacion tesis.pdfAutorizacion tesis.pdfHIDEapplication/pdf335843https://repositorio.uniandes.edu.co/bitstreams/74811b80-d55d-4974-819b-d3b7a51fe2b2/downloade021e27cf9d3ded9e64ee9b2b0efdda0MD52Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdfEstudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdfapplication/pdf2444868https://repositorio.uniandes.edu.co/bitstreams/8956c118-3be0-4aa9-afc8-6ccbc1e74698/download88849155298e3cab57ba820fed5ca7f4MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/4b82f090-6a7f-425a-8954-34665f6560cd/downloadf7d494f61e544413a13e6ba1da2089cdMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/27495bed-eb86-46fb-94b0-581e524da73b/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorizacion tesis.pdf.txtAutorizacion tesis.pdf.txtExtracted texttext/plain2028https://repositorio.uniandes.edu.co/bitstreams/54a13f5e-ec47-49bd-b9cd-9ef4f5993c16/download6344ac03a081044c15fc073e0128bf4cMD56Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdf.txtEstudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdf.txtExtracted texttext/plain101830https://repositorio.uniandes.edu.co/bitstreams/5db762d7-e811-4e5e-b00c-0de26ff6f0aa/download9701e9bf4434907d5321d8feebc0a03cMD58THUMBNAILAutorizacion tesis.pdf.jpgAutorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg11388https://repositorio.uniandes.edu.co/bitstreams/07fae087-cb46-49fd-94d8-c98f3adf56bb/downloadf8fd3613cf41d21d5a6e205c6b41cff8MD57Estudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdf.jpgEstudio y separación de diferentes mezclas enantioméricas mediante electroforesis capilar (CE) utilizando ciclodextrinas como selectores quirales.pdf.jpgGenerated Thumbnailimage/jpeg6932https://repositorio.uniandes.edu.co/bitstreams/852e64e2-fe81-4c49-87a6-081f5f85d4f1/download14afe8aac7844da51bcdc4acf8dfa7e0MD591992/75213oai:repositorio.uniandes.edu.co:1992/752132024-11-30 03:01:11.74http://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |