Self Organized Critical Dynamics on Sierpinski Fractal Lattices

Self-organized criticality is a dynamical system property where, without external tuning, a system naturally evolves towards its critical state, characterized by scale-invariant patterns and power-law distributions. This thesis explores the self-organized critical dynamics on the Sierpinski Carpet l...

Full description

Autores:
Gómez Ramírez, Viviana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73723
Acceso en línea:
https://hdl.handle.net/1992/73723
Palabra clave:
Self-organized criticallity
Fractal lattices
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_46fdd6532c065b08b2c692d3fc88b13d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73723
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Self Organized Critical Dynamics on Sierpinski Fractal Lattices
title Self Organized Critical Dynamics on Sierpinski Fractal Lattices
spellingShingle Self Organized Critical Dynamics on Sierpinski Fractal Lattices
Self-organized criticallity
Fractal lattices
Física
title_short Self Organized Critical Dynamics on Sierpinski Fractal Lattices
title_full Self Organized Critical Dynamics on Sierpinski Fractal Lattices
title_fullStr Self Organized Critical Dynamics on Sierpinski Fractal Lattices
title_full_unstemmed Self Organized Critical Dynamics on Sierpinski Fractal Lattices
title_sort Self Organized Critical Dynamics on Sierpinski Fractal Lattices
dc.creator.fl_str_mv Gómez Ramírez, Viviana
dc.contributor.advisor.none.fl_str_mv Téllez Acosta, Gabriel
dc.contributor.author.none.fl_str_mv Gómez Ramírez, Viviana
dc.contributor.jury.none.fl_str_mv Jiménez Rincón, Jose Julián
dc.subject.keyword.eng.fl_str_mv Self-organized criticallity
Fractal lattices
topic Self-organized criticallity
Fractal lattices
Física
dc.subject.themes.spa.fl_str_mv Física
description Self-organized criticality is a dynamical system property where, without external tuning, a system naturally evolves towards its critical state, characterized by scale-invariant patterns and power-law distributions. This thesis explores the self-organized critical dynamics on the Sierpinski Carpet lattice, a structure which also follows a power-law on its dimension i.e. a fractal. To achieve this, we propose an Ising-percolation model as the foundation for investigating critical dynamics. Within this framework, we delineate a feedback mechanism for critical self-organization and design an algorithm for its numerical implementation. The results obtained from the algorithm demonstrate enhanced efficiency when driving the Sierpinski Carpet towards critical self-organization. This efficiency is linked to the iterative nature of its construction, which significantly influences the formation of clusters. The key outcome of our findings is a novel dependence of self-organized critical dynamics on topology, which may have several applications in fields regarding information transmission.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-01T00:57:53Z
dc.date.available.none.fl_str_mv 2024-02-01T00:57:53Z
dc.date.issued.none.fl_str_mv 2024-12-07
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73723
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73723
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 58 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c9ba59fa-ec5c-4817-8d52-14209dfae0da/download
https://repositorio.uniandes.edu.co/bitstreams/6f9c078b-56f7-4b5c-956b-e63f93e7189e/download
https://repositorio.uniandes.edu.co/bitstreams/033f2a7a-78df-41aa-909b-331ec30175e0/download
https://repositorio.uniandes.edu.co/bitstreams/6e7b8397-411e-4f88-ada3-7b73f608bf4d/download
https://repositorio.uniandes.edu.co/bitstreams/cf321064-0d19-4b7e-9e1e-4e39fadc071f/download
https://repositorio.uniandes.edu.co/bitstreams/4f9d2265-3c7e-4725-8146-9a4e7b21ba94/download
https://repositorio.uniandes.edu.co/bitstreams/383bcba5-7479-49f0-8137-273da590103b/download
https://repositorio.uniandes.edu.co/bitstreams/3dfd320e-d19b-44e5-98f1-3e3c2628a11d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
c7d92f20d21f568c54b9baf31308bcc0
0d3ba99d534839adaa5bb1ec8ed4e61e
f754a1b4acc6544e0ec7812589cfbd74
7ac9e7aec3a7cf9bcfcf6e4f2dc79019
b8b46960436529114021a5368f29179a
0bc8f09f95977345af339426e68c65a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111773019996160
spelling Téllez Acosta, Gabrielvirtual::209-1Gómez Ramírez, VivianaJiménez Rincón, Jose Julián2024-02-01T00:57:53Z2024-02-01T00:57:53Z2024-12-07https://hdl.handle.net/1992/73723instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Self-organized criticality is a dynamical system property where, without external tuning, a system naturally evolves towards its critical state, characterized by scale-invariant patterns and power-law distributions. This thesis explores the self-organized critical dynamics on the Sierpinski Carpet lattice, a structure which also follows a power-law on its dimension i.e. a fractal. To achieve this, we propose an Ising-percolation model as the foundation for investigating critical dynamics. Within this framework, we delineate a feedback mechanism for critical self-organization and design an algorithm for its numerical implementation. The results obtained from the algorithm demonstrate enhanced efficiency when driving the Sierpinski Carpet towards critical self-organization. This efficiency is linked to the iterative nature of its construction, which significantly influences the formation of clusters. The key outcome of our findings is a novel dependence of self-organized critical dynamics on topology, which may have several applications in fields regarding information transmission.La criticalidad auto-organizada es una propiedad de sistemas dinámicos en los cuales, sin ajustes externos, un sistema evoluciona naturalmente hacia su estado crítico, caracterizado por patrones invariantes a escala y distribuciones de ley de potencias. Esta tesis explora la dinámica crítica auto-organizada en el retículo de la Alfombra de Sierpinski, una estructura que también sigue una ley de potencias en su dimensión, es decir, un fractal. Para lograr esto, se propone un modelo de Ising-percolación como escenario de estudio para la dinámica crítica. Dentro de este marco, se delinea un mecanismo de retroalimentación para la auto-organización crítica, junto con un algoritmo diseñado para implementarlo numéricamente. Los resultados obtenidos del algoritmo demuestran mayor eficiencia en la llegada a la auto-organización crítica en la Alfombra de Sierpinski. Esto es atribuido a la naturaleza iterativa de su construcción y a el impacto que esto tiene en la formación de clusters. El resultado clave de este estudio es una novedosa dependencia de la topología en la dinámica crítica auto-organizada, la cual puede tener diversas aplicaciones en campos relacionados con la transmisión de información.FísicoPregradoFísica estadística58 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Self Organized Critical Dynamics on Sierpinski Fractal LatticesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSelf-organized criticallityFractal latticesFísica202012243Publicationhttps://scholar.google.es/citations?user=1JHuoIAAAAAJvirtual::209-10000-0002-6357-260Xvirtual::209-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077224virtual::209-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::209-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::209-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/c9ba59fa-ec5c-4817-8d52-14209dfae0da/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/6f9c078b-56f7-4b5c-956b-e63f93e7189e/downloadae9e573a68e7f92501b6913cc846c39fMD53ORIGINALSelf Organized Critical Dynamics.pdfSelf Organized Critical Dynamics.pdfapplication/pdf1630466https://repositorio.uniandes.edu.co/bitstreams/033f2a7a-78df-41aa-909b-331ec30175e0/downloadc7d92f20d21f568c54b9baf31308bcc0MD55autorizacion tesis-vbGT.pdfautorizacion tesis-vbGT.pdfHIDEapplication/pdf326837https://repositorio.uniandes.edu.co/bitstreams/6e7b8397-411e-4f88-ada3-7b73f608bf4d/download0d3ba99d534839adaa5bb1ec8ed4e61eMD54TEXTSelf Organized Critical Dynamics.pdf.txtSelf Organized Critical Dynamics.pdf.txtExtracted texttext/plain102668https://repositorio.uniandes.edu.co/bitstreams/cf321064-0d19-4b7e-9e1e-4e39fadc071f/downloadf754a1b4acc6544e0ec7812589cfbd74MD56autorizacion tesis-vbGT.pdf.txtautorizacion tesis-vbGT.pdf.txtExtracted texttext/plain1972https://repositorio.uniandes.edu.co/bitstreams/4f9d2265-3c7e-4725-8146-9a4e7b21ba94/download7ac9e7aec3a7cf9bcfcf6e4f2dc79019MD58THUMBNAILSelf Organized Critical Dynamics.pdf.jpgSelf Organized Critical Dynamics.pdf.jpgGenerated Thumbnailimage/jpeg7667https://repositorio.uniandes.edu.co/bitstreams/383bcba5-7479-49f0-8137-273da590103b/downloadb8b46960436529114021a5368f29179aMD57autorizacion tesis-vbGT.pdf.jpgautorizacion tesis-vbGT.pdf.jpgGenerated Thumbnailimage/jpeg10979https://repositorio.uniandes.edu.co/bitstreams/3dfd320e-d19b-44e5-98f1-3e3c2628a11d/download0bc8f09f95977345af339426e68c65a0MD591992/73723oai:repositorio.uniandes.edu.co:1992/737232024-02-16 14:48:54.281http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K