Efficiency improvement of vertical axis water turbines using hydrofoils

Lately, the use of Computational Fluid Dynamics (CFD) to solve real-world problems involving energy production has increased substantially. The application of this technique in the study of hydrokinetic turbines can be oriented towards improving the efficiency of these mechanisms to increase the use...

Full description

Autores:
Parry Mujica, Michael Keith
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/57881
Acceso en línea:
http://hdl.handle.net/1992/57881
Palabra clave:
CFD
Hydrokinetic turbine
Airfoil
Tip speed ratio (TSR)
Moment coefficient
Power coefficient
Wall y+
Hydrofoil
Turbinas hidráulicas
Dinámica de fluidos computacional
Cavitación
Métodos de simulación
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_4675b74a9253a1e25573ecd021f4f662
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/57881
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Efficiency improvement of vertical axis water turbines using hydrofoils
title Efficiency improvement of vertical axis water turbines using hydrofoils
spellingShingle Efficiency improvement of vertical axis water turbines using hydrofoils
CFD
Hydrokinetic turbine
Airfoil
Tip speed ratio (TSR)
Moment coefficient
Power coefficient
Wall y+
Hydrofoil
Turbinas hidráulicas
Dinámica de fluidos computacional
Cavitación
Métodos de simulación
Ingeniería
title_short Efficiency improvement of vertical axis water turbines using hydrofoils
title_full Efficiency improvement of vertical axis water turbines using hydrofoils
title_fullStr Efficiency improvement of vertical axis water turbines using hydrofoils
title_full_unstemmed Efficiency improvement of vertical axis water turbines using hydrofoils
title_sort Efficiency improvement of vertical axis water turbines using hydrofoils
dc.creator.fl_str_mv Parry Mujica, Michael Keith
dc.contributor.advisor.none.fl_str_mv López Mejía, Omar Dario
dc.contributor.author.none.fl_str_mv Parry Mujica, Michael Keith
dc.contributor.researchgroup.es_CO.fl_str_mv Mecánica computacional
dc.subject.keyword.none.fl_str_mv CFD
Hydrokinetic turbine
Airfoil
Tip speed ratio (TSR)
Moment coefficient
Power coefficient
Wall y+
Hydrofoil
topic CFD
Hydrokinetic turbine
Airfoil
Tip speed ratio (TSR)
Moment coefficient
Power coefficient
Wall y+
Hydrofoil
Turbinas hidráulicas
Dinámica de fluidos computacional
Cavitación
Métodos de simulación
Ingeniería
dc.subject.armarc.none.fl_str_mv Turbinas hidráulicas
Dinámica de fluidos computacional
Cavitación
Métodos de simulación
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Lately, the use of Computational Fluid Dynamics (CFD) to solve real-world problems involving energy production has increased substantially. The application of this technique in the study of hydrokinetic turbines can be oriented towards improving the efficiency of these mechanisms to increase the use of renewable energies. The use of Overset Meshing techniques is starting to be the norm for CFD simulation of these devices as it has increased the reliability and reduced the computational resources needed to optimize these devices. The present study, using overset meshing, looks to compare different blade profiles for a hydrokinetic turbine that could potentially be implemented near rivers that are not connected to the Colombian electrical grid. The GOE222, NACA0018, and E817 are analysed, and it is determined that for low TSR values the ideal blade is the NACA0018, while at higher TSR the E817 outperforms the other two. While the study realized is an extensive further analysis involving cavitation and experimental results are required to fully understand the behaviour of the turbine with the three different blades.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-10T20:04:48Z
dc.date.available.none.fl_str_mv 2022-06-10T20:04:48Z
dc.date.issued.none.fl_str_mv 2022-06-10
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/57881
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/57881
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv International Energy Agency, "Electricity Market Report - July 2021," IEA, Paris, 2021.
International Energy Agency, "Oil Market and Russian Supply," IEA, 02 2022. [Online]. Available: https://www.iea.org/reports/russian-supplies-to-global-energy-markets/oil-market-and-russian-supply-2. [Accessed 08 04 2022].
L. Viviana and A. López, "Sin petróleo, economía se contraería 3,3 %: ¿qué tan viable es?," Portafoilio, 22 12 2021. [Online]. Available: https://www.portafolio.co/economia/sin-petroleo-colombiana-se-contraeria-3-3-558804. [Accessed 09 05 2022].
J. VIVAS, "El mapa de 1.710 poblados que aún se alumbran con velas en Colombia," El Tiempo, pp. https://www.eltiempo.com/colombia/otras-ciudades/los-lugares-que-aun-viven-sin-energia-electrica-en-colombia-325892, 10 02 2019.
M. M. M. Saad and N. Asmuin, "Comparison of Horizontal Axis Wind Turbines and Vertical Axis Wind Turbines," IOSR Journal of Engineering, vol. 04, no. 08, pp. 27-30, 2014.
M. E. H. Al-Kharbosy, "Enhancement Protection and Operation of The Doubly Fed Induction Generator During Grid Fault," South Valley University, Qena, Egypt, 2012.
O. D. Lopez, O. E. Mejia, K. M. Escorcia, F. Suarez and S. Laín, "Comparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications," MPDI, vol. 9, no. 1933, p. 17, 2021.
M. Fleisinger, M. Vesenjak and M. Hribersek, "Flow Driven Analysis of a Darrieus Water Turbine," Journal of Mechanical Engineering, vol. 60, no. 12, pp. 769 - 776, 2014.
M. Chakraborty, "A Computational Study on two horizontally close sequential airfoils to determine conjoined pressure distribution and aerodynamic influences on each other," Chittagong University of Engineering & Technology, Chittagong, 2015.
S. Laín, O. López, B. Quintero and D. Meneses, "Design Optimization of a Vertical Axis Water Turbine with CFD," Alternative Energies, Advanced Structured Materials, vol. 34, no. 6, pp. 113-139, 2013.
F. Balduzzi, A. Bianchini, R. Maleci, G. Ferrera and L. Ferrari, "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, vol. 85, pp. 419-435, 2016.
S. Roy, H. Branger, L. Christopher, D. Bourras and B. Paillard, "DESIGN OF AN OFFSHORE THREE-BLADED VERTICAL AXIS WIND TURBINE FOR WIND TUNNEL EXPERIMENTS," ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, 2017.
N. Botero, "ESTUDIO COMPUTACIONAL DE CONTROL ACTIVO DE FLUJO POR MEDIO CHORROS SINTÉTICOS EN UNA TURBINA DARRIEUS EN 3D," Universidad de los Andes, Bogotá, 2020.
e.Ray Europa GmbH, "Continuous Water Monitoring," eRay, 2018. [Online]. Available: https://www.e-ray.eu/water/?lang=en. [Accessed 30 05 2022].
J. A. G. Perez, "Hydrodynamic CFD Study of a Ducted Turbine," Newcastle University, p. 103, 2012.
T. Pujol, A. Massaguer, E. Massaguer, L. Montoro and M. Comamala, "Net Power Coefficient of Vertical and Horizontal Wind Turbines with Crossflow Runners," MDPI: Energies, vol. 11, no. 110, pp. 1-24, 2018.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 48
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Mecánica
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/aa9ddf0f-2677-4d18-89aa-16ca029d3dc0/download
https://repositorio.uniandes.edu.co/bitstreams/56a0db1b-0c8e-46d5-a6be-0bf505f379de/download
https://repositorio.uniandes.edu.co/bitstreams/fcc4b255-ab6d-4da9-93d9-fc257d64c42f/download
https://repositorio.uniandes.edu.co/bitstreams/f0afe12b-724e-497f-9986-84ba304eebeb/download
https://repositorio.uniandes.edu.co/bitstreams/170fa197-ba8e-45a2-88da-b2806cecb358/download
https://repositorio.uniandes.edu.co/bitstreams/d0fdce85-2ad6-4d2c-8016-536beea32e41/download
https://repositorio.uniandes.edu.co/bitstreams/4cea5c3e-8861-42af-9dc6-41634c4c0de9/download
https://repositorio.uniandes.edu.co/bitstreams/f71a3082-fc8b-4417-9eed-688712a17bc3/download
bitstream.checksum.fl_str_mv 1ccb6c8b9c4b4ea91552b18b8d88898a
2256ab467584b4e5e0bb09f68697b616
023fe04111dde481f97f7d11984f73d9
4491fe1afb58beaaef41a73cf7ff2e27
f0fb11b4894b2638b51c1069efd9c6f2
bc2a677484c64f06d6681f5bf54cfe32
5aa5c691a1ffe97abd12c2966efcb8d6
f7d494f61e544413a13e6ba1da2089cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112012675186688
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Mejía, Omar Dariovirtual::15492-1Parry Mujica, Michael Keith3a13ffe3-b80f-4f28-bfc8-0e8145556b19600Mecánica computacional2022-06-10T20:04:48Z2022-06-10T20:04:48Z2022-06-10http://hdl.handle.net/1992/57881instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Lately, the use of Computational Fluid Dynamics (CFD) to solve real-world problems involving energy production has increased substantially. The application of this technique in the study of hydrokinetic turbines can be oriented towards improving the efficiency of these mechanisms to increase the use of renewable energies. The use of Overset Meshing techniques is starting to be the norm for CFD simulation of these devices as it has increased the reliability and reduced the computational resources needed to optimize these devices. The present study, using overset meshing, looks to compare different blade profiles for a hydrokinetic turbine that could potentially be implemented near rivers that are not connected to the Colombian electrical grid. The GOE222, NACA0018, and E817 are analysed, and it is determined that for low TSR values the ideal blade is the NACA0018, while at higher TSR the E817 outperforms the other two. While the study realized is an extensive further analysis involving cavitation and experimental results are required to fully understand the behaviour of the turbine with the three different blades.Ingeniero MecánicoPregrado48application/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaEfficiency improvement of vertical axis water turbines using hydrofoilsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCFDHydrokinetic turbineAirfoilTip speed ratio (TSR)Moment coefficientPower coefficientWall y+HydrofoilTurbinas hidráulicasDinámica de fluidos computacionalCavitaciónMétodos de simulaciónIngenieríaInternational Energy Agency, "Electricity Market Report - July 2021," IEA, Paris, 2021.International Energy Agency, "Oil Market and Russian Supply," IEA, 02 2022. [Online]. Available: https://www.iea.org/reports/russian-supplies-to-global-energy-markets/oil-market-and-russian-supply-2. [Accessed 08 04 2022].L. Viviana and A. López, "Sin petróleo, economía se contraería 3,3 %: ¿qué tan viable es?," Portafoilio, 22 12 2021. [Online]. Available: https://www.portafolio.co/economia/sin-petroleo-colombiana-se-contraeria-3-3-558804. [Accessed 09 05 2022].J. VIVAS, "El mapa de 1.710 poblados que aún se alumbran con velas en Colombia," El Tiempo, pp. https://www.eltiempo.com/colombia/otras-ciudades/los-lugares-que-aun-viven-sin-energia-electrica-en-colombia-325892, 10 02 2019.M. M. M. Saad and N. Asmuin, "Comparison of Horizontal Axis Wind Turbines and Vertical Axis Wind Turbines," IOSR Journal of Engineering, vol. 04, no. 08, pp. 27-30, 2014.M. E. H. Al-Kharbosy, "Enhancement Protection and Operation of The Doubly Fed Induction Generator During Grid Fault," South Valley University, Qena, Egypt, 2012.O. D. Lopez, O. E. Mejia, K. M. Escorcia, F. Suarez and S. Laín, "Comparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications," MPDI, vol. 9, no. 1933, p. 17, 2021.M. Fleisinger, M. Vesenjak and M. Hribersek, "Flow Driven Analysis of a Darrieus Water Turbine," Journal of Mechanical Engineering, vol. 60, no. 12, pp. 769 - 776, 2014.M. Chakraborty, "A Computational Study on two horizontally close sequential airfoils to determine conjoined pressure distribution and aerodynamic influences on each other," Chittagong University of Engineering & Technology, Chittagong, 2015.S. Laín, O. López, B. Quintero and D. Meneses, "Design Optimization of a Vertical Axis Water Turbine with CFD," Alternative Energies, Advanced Structured Materials, vol. 34, no. 6, pp. 113-139, 2013.F. Balduzzi, A. Bianchini, R. Maleci, G. Ferrera and L. Ferrari, "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, vol. 85, pp. 419-435, 2016.S. Roy, H. Branger, L. Christopher, D. Bourras and B. Paillard, "DESIGN OF AN OFFSHORE THREE-BLADED VERTICAL AXIS WIND TURBINE FOR WIND TUNNEL EXPERIMENTS," ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, 2017.N. Botero, "ESTUDIO COMPUTACIONAL DE CONTROL ACTIVO DE FLUJO POR MEDIO CHORROS SINTÉTICOS EN UNA TURBINA DARRIEUS EN 3D," Universidad de los Andes, Bogotá, 2020.e.Ray Europa GmbH, "Continuous Water Monitoring," eRay, 2018. [Online]. Available: https://www.e-ray.eu/water/?lang=en. [Accessed 30 05 2022].J. A. G. Perez, "Hydrodynamic CFD Study of a Ducted Turbine," Newcastle University, p. 103, 2012.T. Pujol, A. Massaguer, E. Massaguer, L. Montoro and M. Comamala, "Net Power Coefficient of Vertical and Horizontal Wind Turbines with Crossflow Runners," MDPI: Energies, vol. 11, no. 110, pp. 1-24, 2018.201820080Publicationhttps://scholar.google.es/citations?user=OT7CoaAAAAAJvirtual::15492-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253413virtual::15492-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::15492-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::15492-1THUMBNAILEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdf.jpgEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdf.jpgIM Thumbnailimage/jpeg8107https://repositorio.uniandes.edu.co/bitstreams/aa9ddf0f-2677-4d18-89aa-16ca029d3dc0/download1ccb6c8b9c4b4ea91552b18b8d88898aMD56Autorizacion_michael.pdf.jpgAutorizacion_michael.pdf.jpgIM Thumbnailimage/jpeg15979https://repositorio.uniandes.edu.co/bitstreams/56a0db1b-0c8e-46d5-a6be-0bf505f379de/download2256ab467584b4e5e0bb09f68697b616MD58TEXTEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdf.txtEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdf.txtExtracted texttext/plain72115https://repositorio.uniandes.edu.co/bitstreams/fcc4b255-ab6d-4da9-93d9-fc257d64c42f/download023fe04111dde481f97f7d11984f73d9MD55Autorizacion_michael.pdf.txtAutorizacion_michael.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/f0afe12b-724e-497f-9986-84ba304eebeb/download4491fe1afb58beaaef41a73cf7ff2e27MD57ORIGINALEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdfEfficiency Improvement of Vertical Axis Water Turbines Uing Hydrofoils_FV.pdfapplication/pdf3164167https://repositorio.uniandes.edu.co/bitstreams/170fa197-ba8e-45a2-88da-b2806cecb358/downloadf0fb11b4894b2638b51c1069efd9c6f2MD54Autorizacion_michael.pdfAutorizacion_michael.pdfHIDEapplication/pdf258903https://repositorio.uniandes.edu.co/bitstreams/d0fdce85-2ad6-4d2c-8016-536beea32e41/downloadbc2a677484c64f06d6681f5bf54cfe32MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/4cea5c3e-8861-42af-9dc6-41634c4c0de9/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/f71a3082-fc8b-4417-9eed-688712a17bc3/downloadf7d494f61e544413a13e6ba1da2089cdMD521992/57881oai:repositorio.uniandes.edu.co:1992/578812024-03-13 15:28:39.623http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==