Searching for extragalactic variable stars using machine learning algorithms

With the advent of the digital era, production of astronomy data has grown exponentially. However, traditional methods of searching for variable stars become ineffective when dealing with these amounts of data. Therefore, it is necessary to explore new techniques to automatise the search and have a...

Full description

Autores:
Acevedo Barroso, Javier Alejandro
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51684
Acceso en línea:
http://hdl.handle.net/1992/51684
Palabra clave:
Estrellas variables
Fotometría
Aprendizaje automático (Inteligencia artificial)
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_43a6ef7a87bab8eeb0f5b30b6180fcb1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51684
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Varela, José Alejandrovirtual::5475-1Acevedo Barroso, Javier Alejandro3871236f-4dc7-4d66-a145-cc0f10e471f8400Forero Romero, Jaime ErnestoMinniti, Dante2021-08-10T18:38:38Z2021-08-10T18:38:38Z2020http://hdl.handle.net/1992/5168423861.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/With the advent of the digital era, production of astronomy data has grown exponentially. However, traditional methods of searching for variable stars become ineffective when dealing with these amounts of data. Therefore, it is necessary to explore new techniques to automatise the search and have a trustworthy classification of variable stars. The objective of this work is to find variable stars in the galaxy NGC 55 using public wide field images taken for the Araucaria Project. The 29 images were taken between 2003 and 2006 using the 2.2m MPG/ESO Telescope at La Silla observatory in Chile. It is worth noting that the images are not used in any publication on NGC 55, making this work an independent study of the galaxy. We developed a pipeline using IRAF and Astropy in order to process the images and to correct their World Coordinate System. Additionally, a final stack was made for 23 of the nights...El siglo XXI trajo consigo un aumento exponencial en la producción de datos astronómicos. Pero, los métodos tradicionales de búsqueda de estrellas variables se vuelven ineficientes ante ese aumento de datos. Por lo cuál, es necesaria la exploración de técnicas alternativas para automatizar la búsqueda de estrellas variables y tener una clasificación fiable y sistemática de ellas. El objetivo de este proyecto es encontrar estrellas variables en la galaxia NGC 55 usando treinta imágenes de campo amplio tomadas para el Proyecto Araucaria con el telescopio de 2.2m MPG/ESO en el observatorio de La Silla, Chile, entre 2003 y 2006. Si bien, las imágenes fueron tomadas como parte del Proyecto Araucaria, estas no fueron incluidas en los resultados publicados para NGC 55. Por lo tanto, este trabajo es un estudio de variabilidad original. Se hizo un pipeline usando IRAF y Astropy para reducir las imágenes. De 29 noches, se logró obtener un stack para 23 de ellas...Magíster en FísicaMaestría99 hojasapplication/pdfengUniversidad de los AndesMaestría en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaSearching for extragalactic variable stars using machine learning algorithmsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMEstrellas variablesFotometríaAprendizaje automático (Inteligencia artificial)Física201422995Publication88a1271b-7c5b-4cba-a02a-87878aba01e4virtual::5475-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::5475-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::5475-1TEXT23861.pdf.txt23861.pdf.txtExtracted texttext/plain133151https://repositorio.uniandes.edu.co/bitstreams/898da92e-b51b-4a0b-859c-de4fe9657238/download2cb426a7e4f0ddeef6cc46add6ef1d62MD54THUMBNAIL23861.pdf.jpg23861.pdf.jpgIM Thumbnailimage/jpeg9385https://repositorio.uniandes.edu.co/bitstreams/4e60289c-4a84-4529-b6e6-7ee2e7b4fc53/download47557bc314a17e371122ccde93b3077eMD55ORIGINAL23861.pdfapplication/pdf18368117https://repositorio.uniandes.edu.co/bitstreams/3838d6c0-889c-4fdd-b57b-9a98b6009b9b/downloadf58acb5eba295845854da6f4ab4194c6MD511992/51684oai:repositorio.uniandes.edu.co:1992/516842024-03-13 12:57:02.912http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Searching for extragalactic variable stars using machine learning algorithms
title Searching for extragalactic variable stars using machine learning algorithms
spellingShingle Searching for extragalactic variable stars using machine learning algorithms
Estrellas variables
Fotometría
Aprendizaje automático (Inteligencia artificial)
Física
title_short Searching for extragalactic variable stars using machine learning algorithms
title_full Searching for extragalactic variable stars using machine learning algorithms
title_fullStr Searching for extragalactic variable stars using machine learning algorithms
title_full_unstemmed Searching for extragalactic variable stars using machine learning algorithms
title_sort Searching for extragalactic variable stars using machine learning algorithms
dc.creator.fl_str_mv Acevedo Barroso, Javier Alejandro
dc.contributor.advisor.none.fl_str_mv García Varela, José Alejandro
dc.contributor.author.none.fl_str_mv Acevedo Barroso, Javier Alejandro
dc.contributor.jury.none.fl_str_mv Forero Romero, Jaime Ernesto
Minniti, Dante
dc.subject.armarc.none.fl_str_mv Estrellas variables
Fotometría
Aprendizaje automático (Inteligencia artificial)
topic Estrellas variables
Fotometría
Aprendizaje automático (Inteligencia artificial)
Física
dc.subject.themes.none.fl_str_mv Física
description With the advent of the digital era, production of astronomy data has grown exponentially. However, traditional methods of searching for variable stars become ineffective when dealing with these amounts of data. Therefore, it is necessary to explore new techniques to automatise the search and have a trustworthy classification of variable stars. The objective of this work is to find variable stars in the galaxy NGC 55 using public wide field images taken for the Araucaria Project. The 29 images were taken between 2003 and 2006 using the 2.2m MPG/ESO Telescope at La Silla observatory in Chile. It is worth noting that the images are not used in any publication on NGC 55, making this work an independent study of the galaxy. We developed a pipeline using IRAF and Astropy in order to process the images and to correct their World Coordinate System. Additionally, a final stack was made for 23 of the nights...
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:38:38Z
dc.date.available.none.fl_str_mv 2021-08-10T18:38:38Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51684
dc.identifier.pdf.none.fl_str_mv 23861.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51684
identifier_str_mv 23861.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 99 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/898da92e-b51b-4a0b-859c-de4fe9657238/download
https://repositorio.uniandes.edu.co/bitstreams/4e60289c-4a84-4529-b6e6-7ee2e7b4fc53/download
https://repositorio.uniandes.edu.co/bitstreams/3838d6c0-889c-4fdd-b57b-9a98b6009b9b/download
bitstream.checksum.fl_str_mv 2cb426a7e4f0ddeef6cc46add6ef1d62
47557bc314a17e371122ccde93b3077e
f58acb5eba295845854da6f4ab4194c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133883104198656