Convex optimization on Landau Theory Models

Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase tr...

Full description

Autores:
Afanador Rodríguez, Daniel Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75214
Acceso en línea:
https://hdl.handle.net/1992/75214
Palabra clave:
Convex Optimization
Landau Theory
Matemáticas
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_42ccd3a3c923a2f4a050d5b140732b52
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75214
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Convex optimization on Landau Theory Models
title Convex optimization on Landau Theory Models
spellingShingle Convex optimization on Landau Theory Models
Convex Optimization
Landau Theory
Matemáticas
title_short Convex optimization on Landau Theory Models
title_full Convex optimization on Landau Theory Models
title_fullStr Convex optimization on Landau Theory Models
title_full_unstemmed Convex optimization on Landau Theory Models
title_sort Convex optimization on Landau Theory Models
dc.creator.fl_str_mv Afanador Rodríguez, Daniel Felipe
dc.contributor.advisor.none.fl_str_mv Meziat Vélez, René Joaquín
dc.contributor.author.none.fl_str_mv Afanador Rodríguez, Daniel Felipe
dc.contributor.jury.none.fl_str_mv Giniatoulline, Andrei
dc.subject.keyword.eng.fl_str_mv Convex Optimization
Landau Theory
topic Convex Optimization
Landau Theory
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase transformations, where the second derivative of the free energy with respect to temperature is discontinuous at the transition temperature. Furthermore, in many study cases, it is of utter importance to find global minima of the free energy density for the identification of such transition temperatures. In accordance with this problematic, due to the possible high complexity of the system's free energy polynomial, this work proposes an approach to locate its global minima by means of its convex envelope, considering the optimization problem given by the Method of Moments. The development of this approach utilizes semidefinite programming techniques to construct a self-contained algorithm that is applicable under the scope of applied mathematics, physics and mechanical engineering.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-02T13:27:16Z
dc.date.available.none.fl_str_mv 2024-12-02T13:27:16Z
dc.date.issued.none.fl_str_mv 2024-01-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75214
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75214
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [Akh65] N.I. Akhiezer, The classical moment problem: And some related questions in analysis, University mathematical monographs, Oliver & Boyd, 1965.
[AM11] E. Aranda and R.J. Meziat, The method of moments for some onedimensional, non-local, non-convex variational problems, Journal of Mathematical Analysis and Applications 382 (2011), no. 1, 314–323.
[CFM06] Raul Curto, Lawrence Fialkow, and H. Moeller, The extremal truncated moment problem, Integral Equations and Operator Theory 60 (2006).
[Fia11] Lawrence A. Fialkow, Solution of the truncated moment problem, Transactions of the American Mathematical Society 363 (2011), no. 6, 3133–3165.
[HH13] J.R. Hook and H.E. Hall, Solid state physics, Manchester Physics Series, Wiley, 2013.
[Ioh82] I.S. Iohvidov, Hankel and toeplitz matrices and forms: Algebraic theory, Birkhauser, 1982.
[Lan56] Lev Davídovich Landau, Theory of fermi-liquids, 1956.
[MBW08] Nele Moelans, Bart Blanpain, and Patrick Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad 32 (2008), no. 2, 268–294.
[MV06] Rene Meziat and Jorge Villalobos, Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization, Structural and Multidisciplinary Optimization 32 (2006), 507–519.
[Nes00] Yurii Nesterov, Squared functional systems and optimization problems.
[VB01] Robert Vanderbei and Yurttan Benson, On formulating semidefinite programming problems as smooth convex nonlinear optimization problems.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 45 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0ded6ca3-2083-4e7c-89b3-1860b9ac485e/download
https://repositorio.uniandes.edu.co/bitstreams/e612fd6c-42fe-4f25-a15b-870eccd4ce89/download
https://repositorio.uniandes.edu.co/bitstreams/0999bc78-c2d6-472a-9371-df8c212bb180/download
https://repositorio.uniandes.edu.co/bitstreams/89ba793e-f942-41c7-94c3-af08e6123473/download
https://repositorio.uniandes.edu.co/bitstreams/ff225e2a-54ea-4cd0-9108-3072f1d412c8/download
https://repositorio.uniandes.edu.co/bitstreams/108e2d0f-56f9-454f-adff-93e4fb7af82f/download
https://repositorio.uniandes.edu.co/bitstreams/a44dc697-fcbf-4ecf-8026-120122ccc3ad/download
https://repositorio.uniandes.edu.co/bitstreams/bd106325-f5e5-4a79-a91a-b87c9bae0bc1/download
bitstream.checksum.fl_str_mv f7900b612eaad928dd91c08af92d76aa
b843755f3406215a1b4458ba0893d4e4
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
ec81d20702f34b2704459edd96d61945
ff18a2bf6e23694ba9d622d6454cad85
c3d401c91931fc8be46f8395bbd587a1
07483f3fe999a8e29d4df50e402ede80
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159177559638016
spelling Meziat Vélez, René Joaquínvirtual::20160-1Afanador Rodríguez, Daniel FelipeGiniatoulline, Andreivirtual::20161-12024-12-02T13:27:16Z2024-12-02T13:27:16Z2024-01-15https://hdl.handle.net/1992/75214instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase transformations, where the second derivative of the free energy with respect to temperature is discontinuous at the transition temperature. Furthermore, in many study cases, it is of utter importance to find global minima of the free energy density for the identification of such transition temperatures. In accordance with this problematic, due to the possible high complexity of the system's free energy polynomial, this work proposes an approach to locate its global minima by means of its convex envelope, considering the optimization problem given by the Method of Moments. The development of this approach utilizes semidefinite programming techniques to construct a self-contained algorithm that is applicable under the scope of applied mathematics, physics and mechanical engineering.Pregrado45 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Convex optimization on Landau Theory ModelsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPConvex OptimizationLandau TheoryMatemáticas[Akh65] N.I. Akhiezer, The classical moment problem: And some related questions in analysis, University mathematical monographs, Oliver & Boyd, 1965.[AM11] E. Aranda and R.J. Meziat, The method of moments for some onedimensional, non-local, non-convex variational problems, Journal of Mathematical Analysis and Applications 382 (2011), no. 1, 314–323.[CFM06] Raul Curto, Lawrence Fialkow, and H. Moeller, The extremal truncated moment problem, Integral Equations and Operator Theory 60 (2006).[Fia11] Lawrence A. Fialkow, Solution of the truncated moment problem, Transactions of the American Mathematical Society 363 (2011), no. 6, 3133–3165.[HH13] J.R. Hook and H.E. Hall, Solid state physics, Manchester Physics Series, Wiley, 2013.[Ioh82] I.S. Iohvidov, Hankel and toeplitz matrices and forms: Algebraic theory, Birkhauser, 1982.[Lan56] Lev Davídovich Landau, Theory of fermi-liquids, 1956.[MBW08] Nele Moelans, Bart Blanpain, and Patrick Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad 32 (2008), no. 2, 268–294.[MV06] Rene Meziat and Jorge Villalobos, Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization, Structural and Multidisciplinary Optimization 32 (2006), 507–519.[Nes00] Yurii Nesterov, Squared functional systems and optimization problems.[VB01] Robert Vanderbei and Yurttan Benson, On formulating semidefinite programming problems as smooth convex nonlinear optimization problems.201812161Publication9b0eef7d-4ead-4946-b39e-35ec3e85f536virtual::20160-19b0eef7d-4ead-4946-b39e-35ec3e85f536virtual::20160-19b923672-acc7-4823-8661-f59822bb191bvirtual::20161-19b923672-acc7-4823-8661-f59822bb191bvirtual::20161-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000209651virtual::20160-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000169927virtual::20161-1ORIGINALConvex Optimization on Landau Theory Models.pdfConvex Optimization on Landau Theory Models.pdfapplication/pdf475488https://repositorio.uniandes.edu.co/bitstreams/0ded6ca3-2083-4e7c-89b3-1860b9ac485e/downloadf7900b612eaad928dd91c08af92d76aaMD51FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdfFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdfHIDEapplication/pdf200293https://repositorio.uniandes.edu.co/bitstreams/e612fd6c-42fe-4f25-a15b-870eccd4ce89/downloadb843755f3406215a1b4458ba0893d4e4MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/0999bc78-c2d6-472a-9371-df8c212bb180/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/89ba793e-f942-41c7-94c3-af08e6123473/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTConvex Optimization on Landau Theory Models.pdf.txtConvex Optimization on Landau Theory Models.pdf.txtExtracted texttext/plain67959https://repositorio.uniandes.edu.co/bitstreams/ff225e2a-54ea-4cd0-9108-3072f1d412c8/downloadec81d20702f34b2704459edd96d61945MD55FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.txtFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.txtExtracted texttext/plain2008https://repositorio.uniandes.edu.co/bitstreams/108e2d0f-56f9-454f-adff-93e4fb7af82f/downloadff18a2bf6e23694ba9d622d6454cad85MD57THUMBNAILConvex Optimization on Landau Theory Models.pdf.jpgConvex Optimization on Landau Theory Models.pdf.jpgGenerated Thumbnailimage/jpeg6178https://repositorio.uniandes.edu.co/bitstreams/a44dc697-fcbf-4ecf-8026-120122ccc3ad/downloadc3d401c91931fc8be46f8395bbd587a1MD56FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.jpgFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.jpgGenerated Thumbnailimage/jpeg11221https://repositorio.uniandes.edu.co/bitstreams/bd106325-f5e5-4a79-a91a-b87c9bae0bc1/download07483f3fe999a8e29d4df50e402ede80MD581992/75214oai:repositorio.uniandes.edu.co:1992/752142024-12-03 03:01:07.397http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K