Convex optimization on Landau Theory Models
Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase tr...
- Autores:
-
Afanador Rodríguez, Daniel Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75214
- Acceso en línea:
- https://hdl.handle.net/1992/75214
- Palabra clave:
- Convex Optimization
Landau Theory
Matemáticas
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_42ccd3a3c923a2f4a050d5b140732b52 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75214 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Convex optimization on Landau Theory Models |
title |
Convex optimization on Landau Theory Models |
spellingShingle |
Convex optimization on Landau Theory Models Convex Optimization Landau Theory Matemáticas |
title_short |
Convex optimization on Landau Theory Models |
title_full |
Convex optimization on Landau Theory Models |
title_fullStr |
Convex optimization on Landau Theory Models |
title_full_unstemmed |
Convex optimization on Landau Theory Models |
title_sort |
Convex optimization on Landau Theory Models |
dc.creator.fl_str_mv |
Afanador Rodríguez, Daniel Felipe |
dc.contributor.advisor.none.fl_str_mv |
Meziat Vélez, René Joaquín |
dc.contributor.author.none.fl_str_mv |
Afanador Rodríguez, Daniel Felipe |
dc.contributor.jury.none.fl_str_mv |
Giniatoulline, Andrei |
dc.subject.keyword.eng.fl_str_mv |
Convex Optimization Landau Theory |
topic |
Convex Optimization Landau Theory Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase transformations, where the second derivative of the free energy with respect to temperature is discontinuous at the transition temperature. Furthermore, in many study cases, it is of utter importance to find global minima of the free energy density for the identification of such transition temperatures. In accordance with this problematic, due to the possible high complexity of the system's free energy polynomial, this work proposes an approach to locate its global minima by means of its convex envelope, considering the optimization problem given by the Method of Moments. The development of this approach utilizes semidefinite programming techniques to construct a self-contained algorithm that is applicable under the scope of applied mathematics, physics and mechanical engineering. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-12-02T13:27:16Z |
dc.date.available.none.fl_str_mv |
2024-12-02T13:27:16Z |
dc.date.issued.none.fl_str_mv |
2024-01-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75214 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75214 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[Akh65] N.I. Akhiezer, The classical moment problem: And some related questions in analysis, University mathematical monographs, Oliver & Boyd, 1965. [AM11] E. Aranda and R.J. Meziat, The method of moments for some onedimensional, non-local, non-convex variational problems, Journal of Mathematical Analysis and Applications 382 (2011), no. 1, 314–323. [CFM06] Raul Curto, Lawrence Fialkow, and H. Moeller, The extremal truncated moment problem, Integral Equations and Operator Theory 60 (2006). [Fia11] Lawrence A. Fialkow, Solution of the truncated moment problem, Transactions of the American Mathematical Society 363 (2011), no. 6, 3133–3165. [HH13] J.R. Hook and H.E. Hall, Solid state physics, Manchester Physics Series, Wiley, 2013. [Ioh82] I.S. Iohvidov, Hankel and toeplitz matrices and forms: Algebraic theory, Birkhauser, 1982. [Lan56] Lev Davídovich Landau, Theory of fermi-liquids, 1956. [MBW08] Nele Moelans, Bart Blanpain, and Patrick Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad 32 (2008), no. 2, 268–294. [MV06] Rene Meziat and Jorge Villalobos, Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization, Structural and Multidisciplinary Optimization 32 (2006), 507–519. [Nes00] Yurii Nesterov, Squared functional systems and optimization problems. [VB01] Robert Vanderbei and Yurttan Benson, On formulating semidefinite programming problems as smooth convex nonlinear optimization problems. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
45 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0ded6ca3-2083-4e7c-89b3-1860b9ac485e/download https://repositorio.uniandes.edu.co/bitstreams/e612fd6c-42fe-4f25-a15b-870eccd4ce89/download https://repositorio.uniandes.edu.co/bitstreams/0999bc78-c2d6-472a-9371-df8c212bb180/download https://repositorio.uniandes.edu.co/bitstreams/89ba793e-f942-41c7-94c3-af08e6123473/download https://repositorio.uniandes.edu.co/bitstreams/ff225e2a-54ea-4cd0-9108-3072f1d412c8/download https://repositorio.uniandes.edu.co/bitstreams/108e2d0f-56f9-454f-adff-93e4fb7af82f/download https://repositorio.uniandes.edu.co/bitstreams/a44dc697-fcbf-4ecf-8026-120122ccc3ad/download https://repositorio.uniandes.edu.co/bitstreams/bd106325-f5e5-4a79-a91a-b87c9bae0bc1/download |
bitstream.checksum.fl_str_mv |
f7900b612eaad928dd91c08af92d76aa b843755f3406215a1b4458ba0893d4e4 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f ec81d20702f34b2704459edd96d61945 ff18a2bf6e23694ba9d622d6454cad85 c3d401c91931fc8be46f8395bbd587a1 07483f3fe999a8e29d4df50e402ede80 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159177559638016 |
spelling |
Meziat Vélez, René Joaquínvirtual::20160-1Afanador Rodríguez, Daniel FelipeGiniatoulline, Andreivirtual::20161-12024-12-02T13:27:16Z2024-12-02T13:27:16Z2024-01-15https://hdl.handle.net/1992/75214instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Within the theoretical framework of phase transformation physics, one of the most studied and applied strategies to comprehend the universal behavior of many different physical systems is given by the Landau theory, which provides a phenomenological theory for the system's second order phase transformations, where the second derivative of the free energy with respect to temperature is discontinuous at the transition temperature. Furthermore, in many study cases, it is of utter importance to find global minima of the free energy density for the identification of such transition temperatures. In accordance with this problematic, due to the possible high complexity of the system's free energy polynomial, this work proposes an approach to locate its global minima by means of its convex envelope, considering the optimization problem given by the Method of Moments. The development of this approach utilizes semidefinite programming techniques to construct a self-contained algorithm that is applicable under the scope of applied mathematics, physics and mechanical engineering.Pregrado45 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Convex optimization on Landau Theory ModelsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPConvex OptimizationLandau TheoryMatemáticas[Akh65] N.I. Akhiezer, The classical moment problem: And some related questions in analysis, University mathematical monographs, Oliver & Boyd, 1965.[AM11] E. Aranda and R.J. Meziat, The method of moments for some onedimensional, non-local, non-convex variational problems, Journal of Mathematical Analysis and Applications 382 (2011), no. 1, 314–323.[CFM06] Raul Curto, Lawrence Fialkow, and H. Moeller, The extremal truncated moment problem, Integral Equations and Operator Theory 60 (2006).[Fia11] Lawrence A. Fialkow, Solution of the truncated moment problem, Transactions of the American Mathematical Society 363 (2011), no. 6, 3133–3165.[HH13] J.R. Hook and H.E. Hall, Solid state physics, Manchester Physics Series, Wiley, 2013.[Ioh82] I.S. Iohvidov, Hankel and toeplitz matrices and forms: Algebraic theory, Birkhauser, 1982.[Lan56] Lev Davídovich Landau, Theory of fermi-liquids, 1956.[MBW08] Nele Moelans, Bart Blanpain, and Patrick Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad 32 (2008), no. 2, 268–294.[MV06] Rene Meziat and Jorge Villalobos, Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization, Structural and Multidisciplinary Optimization 32 (2006), 507–519.[Nes00] Yurii Nesterov, Squared functional systems and optimization problems.[VB01] Robert Vanderbei and Yurttan Benson, On formulating semidefinite programming problems as smooth convex nonlinear optimization problems.201812161Publication9b0eef7d-4ead-4946-b39e-35ec3e85f536virtual::20160-19b0eef7d-4ead-4946-b39e-35ec3e85f536virtual::20160-19b923672-acc7-4823-8661-f59822bb191bvirtual::20161-19b923672-acc7-4823-8661-f59822bb191bvirtual::20161-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000209651virtual::20160-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000169927virtual::20161-1ORIGINALConvex Optimization on Landau Theory Models.pdfConvex Optimization on Landau Theory Models.pdfapplication/pdf475488https://repositorio.uniandes.edu.co/bitstreams/0ded6ca3-2083-4e7c-89b3-1860b9ac485e/downloadf7900b612eaad928dd91c08af92d76aaMD51FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdfFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdfHIDEapplication/pdf200293https://repositorio.uniandes.edu.co/bitstreams/e612fd6c-42fe-4f25-a15b-870eccd4ce89/downloadb843755f3406215a1b4458ba0893d4e4MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/0999bc78-c2d6-472a-9371-df8c212bb180/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/89ba793e-f942-41c7-94c3-af08e6123473/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTConvex Optimization on Landau Theory Models.pdf.txtConvex Optimization on Landau Theory Models.pdf.txtExtracted texttext/plain67959https://repositorio.uniandes.edu.co/bitstreams/ff225e2a-54ea-4cd0-9108-3072f1d412c8/downloadec81d20702f34b2704459edd96d61945MD55FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.txtFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.txtExtracted texttext/plain2008https://repositorio.uniandes.edu.co/bitstreams/108e2d0f-56f9-454f-adff-93e4fb7af82f/downloadff18a2bf6e23694ba9d622d6454cad85MD57THUMBNAILConvex Optimization on Landau Theory Models.pdf.jpgConvex Optimization on Landau Theory Models.pdf.jpgGenerated Thumbnailimage/jpeg6178https://repositorio.uniandes.edu.co/bitstreams/a44dc697-fcbf-4ecf-8026-120122ccc3ad/downloadc3d401c91931fc8be46f8395bbd587a1MD56FORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.jpgFORMATODEAUTORIZACIÓN ENTREGATESISDANIEL.pdf.jpgGenerated Thumbnailimage/jpeg11221https://repositorio.uniandes.edu.co/bitstreams/bd106325-f5e5-4a79-a91a-b87c9bae0bc1/download07483f3fe999a8e29d4df50e402ede80MD581992/75214oai:repositorio.uniandes.edu.co:1992/752142024-12-03 03:01:07.397http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |