Bacterias como potenciales biocontroladores de patógenos en poscosecha
La presente monografía refleja el estado del arte en la investigación de las bacterias como potenciales agentes de biocontrol, las características mas importantes tanto de las bacterias como de las pruebas que se deben realizar, y algunos puntos que se consideran importantes para el futuro.
- Autores:
-
Mora Cataño, Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/59126
- Acceso en línea:
- http://hdl.handle.net/1992/59126
- Palabra clave:
- Poscosecha
Biocontrol
Bacterias
Pesticidas
Microbiología
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 Internacional
id |
UNIANDES2_4219dc7eaf33df3e6fa4653ac94211fb |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/59126 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
title |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
spellingShingle |
Bacterias como potenciales biocontroladores de patógenos en poscosecha Poscosecha Biocontrol Bacterias Pesticidas Microbiología |
title_short |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
title_full |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
title_fullStr |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
title_full_unstemmed |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
title_sort |
Bacterias como potenciales biocontroladores de patógenos en poscosecha |
dc.creator.fl_str_mv |
Mora Cataño, Camilo |
dc.contributor.advisor.none.fl_str_mv |
Cárdenas Toquica, Martha Emiliana |
dc.contributor.author.none.fl_str_mv |
Mora Cataño, Camilo |
dc.subject.keyword.none.fl_str_mv |
Poscosecha Biocontrol Bacterias Pesticidas |
topic |
Poscosecha Biocontrol Bacterias Pesticidas Microbiología |
dc.subject.themes.es_CO.fl_str_mv |
Microbiología |
description |
La presente monografía refleja el estado del arte en la investigación de las bacterias como potenciales agentes de biocontrol, las características mas importantes tanto de las bacterias como de las pruebas que se deben realizar, y algunos puntos que se consideran importantes para el futuro. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-25T16:07:57Z |
dc.date.available.none.fl_str_mv |
2022-07-25T16:07:57Z |
dc.date.issued.none.fl_str_mv |
2022-07-23 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/59126 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/59126 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Abriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201¿232. https://doi.org/10.1111/j.1574-6976.2010.00244.x Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. https://doi.org/10.2478/v10102-009-0001-7 Arrow Scientific. (2013). pH values of foods and food products. https://www.arrowscientific.com.au/index.phpoption=com_content&view=article&id=61:ph-values-of-foods-and-food-products&catid=17&Itemid=31 Babbal, Adivitiya, & Khasa, Y. P. (2017). Microbes as Biocontrol Agents. Probiotics and Plant Health, 507-552. https://doi.org/10.1007/978-981-10-3473-2_24 Berrios-Rodriguez, A., Olanya, O., Ukuku, D., Niemira, B., Orellana, L., Mukhopadhyay, S., Cassidy, J., & Boyd, G. (2020). Inactivation of Listeria monocytogenes on post-harvest carrot and tomato by gamma radiation, sanitizer, biocontrol treatments and their combinations. LWT, 118, 108805. https://doi.org/10.1016/j.lwt.2019.108805 Bosch, A. (2006, octubre). Acidez gástrica. Elsevier. https://www.elsevier.es/es-revista-offarm-4-pdf-13094152 Bridges, M. A., & Mattice, M. R. (1939). Over two thousand estimations of the ph of representative foods*. American Journal of Digestive Diseases, 6(7), 440-449. https://doi.org/10.1007/bf02996505 CABI. (2020, 24 diciembre). Product Search BioProtection Portal. Portal de Bioprotección. https://bioprotectionportal.com/es/productsearch?country=CO&lng=en&occupation=Other&pest=91026762&filter=pest Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz De Tosetti, M. I. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251-257. https://doi.org/10.1016/j.ijfoodmicro.2006.07.003 Center for Food Safety and Applied Nutrition. (2022, 17 febrero). Science and History of GMOs and Other Food Modification Processes. U.S. Food and Drug Administration. https://www.fda.gov/food/agricultural-biotechnology/science-and-history-gmos-and-other-food-modification-processes Chen, C., Cao, Z., Li, J., Tao, C., Feng, Y., & Han, Y. (2020). A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biological Control, 148, 104306. https://doi.org/10.1016/j.biocontrol.2020.104306 Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2007). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30(5), 919-923. https://doi.org/10.1007/s10529-007-9626-9 Coates, L.M., and Johnson, G.I. (1997).Postharvest diseases of fruit and vegetables. In J. Brown, H. Ogle, (Ed) Plant Pathogens and Plant Diseases, (pp.533-547). Rockvale Publications. Dahiri, B., Martín-Reina, J., Carbonero-Aguilar, P., Aguilera-Velázquez, J. R., Bautista, J., & Moreno, I. (2021). Impact of Pesticide Exposure among Rural and Urban Female Population. An Overview. International Journal of Environmental Research and Public Health, 18(18), 9907. https://doi.org/10.3390/ijerph18189907 DANE. (2019). Encuesta Nacional Agropecuaria. https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdf Departamento Nacional de Planeación (DNP). (2016). 65.Pérdida y desperdicio de alimentos en Colombia. DNP. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdf Droby, S. (2006). improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae, 709, 45-52. https://doi.org/10.17660/actahortic.2006.709.5 Elad, Y., & Stewart, A. (2007). Microbial Control of Botrytis spp. Botrytis: Biology, Pathology and Control, 223-241. https://doi.org/10.1007/978-1-4020-2626-3_13 FAO. (2011). Global food losses and food waste. https://www.fao.org/3/mb060e/mb060e00.htm Fu, G., Huang, S., Ye, Y., Wu, Y., Cen, Z., & Lin, S. (2010). Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases. Biological Control, 55(1), 1-10. https://doi.org/10.1016/j.biocontrol.2010.05.001 Gatto, N. M., Ogata, P., & Lytle, B. (2021). Farming, Pesticides, and Brain Cancer: A 20-Year Updated Systematic Literature Review and Meta-Analysis. Cancers, 13(17), 4477. https://doi.org/10.3390/cancers13174477 Gong, A., Sun, G., Zhao, Z., Liao, Y., & Zhang, J. (2020). Staphylococcus saprophyticus L-38 produces volatile 3,3-dimethyl-1,2-epoxybutane with strong inhibitory activity against Aspergillus flavus germination and aflatoxin production. World Mycotoxin Journal, 13(2), 247-258. https://doi.org/10.3920/wmj2019.2495 Gould, M., Nelson, L. M., Waterer, D., & Hynes, R. K. (2008). Biocontrol ofFusarium sambucinum, dry rot of potato, bySerratia plymuthica5-6. Biocontrol Science and Technology, 18(10), 1005-1016. https://doi.org/10.1080/09583150802478189 Helbig. (2001). Biological Control of Botrytis cinerea Pers. ex Fr. in Strawberry by Paenibacillus polymyxa (Isolate 18191). Journal of Phytopathology, 149(5), 265¿273. https://doi.org/10.1046/j.1439-0434.2001.00609.x Heydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10(4), 273-290. https://doi.org/10.3923/jbs.2010.273.290 Icaza-Chávez, M. (2013). Gut Microbiota in Health and Disease. Revista de Gastroenterología de México, 78(4), 240¿248. https://doi.org/10.1016/j.rgmx.2013.04.004 Ilhan, K., & Karabulut, O. A. (2013). Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. BioControl, 58(4), 457-470. https://doi.org/10.1007/s10526-012-9503-x Instituto Colombiano Agropecuario. (2022). 38.Empresas comercializadoras de plaguicidas químicos de uso agrícola. ICA. https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/estadisticas/bd_empresas-plaguicidas-31-03-2022.aspx International Agency for Research on Cancer (IARC). (2022). List of Classifications IARC Monographs on the Identification of Carcinogenic Hazards to Humans. World Health Organization. https://monographs.iarc.who.int/list-of-classifications Karalexi, M. A., Tagkas, C. F., Markozannes, G., Tseretopoulou, X., Hernández, A. F., Schüz, J., Halldorsson, T. I., Psaltopoulou, T., Petridou, E. T., Tzoulaki, I., & Ntzani, E. E. (2021). Exposure to pesticides and childhood leukemia risk: A systematic review and meta-analysis. Environmental Pollution, 285, 117376. https://doi.org/10.1016/j.envpol.2021.117376 Kotan, R., Dikbas, N., & Bostan, H. (2009). Biological control of post harvest disease caused by Aspergillus flavus on stored lemon fruits. African Journal of Biotechnology, 8, 209-214. https://doi.org/10.5897/AJB2009.000-9038 Ktenioudaki, A., O'Donnell, C. P., Emond, J. P., & do Nascimento Nunes, M. C. (2021). Blueberry supply chain: Critical steps impacting fruit quality and application of a boosted regression tree model to predict weight loss. Postharvest Biology and Technology, 179, 111590. https://doi.org/10.1016/j.postharvbio.2021.111590 Laboratory Safety Manual. 4th Ed. World Health Organization (WHO), 2020 Lahkar, J., Goswami, D., Deka, S., & Ahmed, G. (2017). Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli. European Journal of Plant Pathology, 150(1), 57-71. https://doi.org/10.1007/s10658-017-1252-3 Lahlali, R., Aksissou, W., Lyousfi, N., Ezrari, S., Blenzar, A., Tahiri, A., Ennahli, S., Hrusti, J., MacLean, D., & Amiri, S. (2020). Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microbial Pathogenesis, 139, 103914. https://doi.org/10.1016/j.micpath.2019.103914 Lamine Senghor, A., Liang, W. J., & Ho, W. C. (2007). Integrated control of Colletotrichum gloeosporioides on mango fruit in Taiwan by the combination of Bacillus subtilis and fruit bagging. Biocontrol Science and Technology, 17(8), 865-870. https://doi.org/10.1080/09583150701527409 Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A., & Coton, E. (2017). Antifungal Microbial Agents for Food Biopreservation¿A Review. Microorganisms, 5(3), 37. https://doi.org/10.3390/microorganisms5030037 Li, X., Zhang, M., Qi, D., Zhou, D., Qi, C., Li, C., Liu, S., Xiang, D., Zhang, L., Xie, J., & Wang, W. (2021). Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.735732 Linares-Morales, J. R., Gutiérrez-Méndez, N., Rivera-Chavira, B. E., Pérez-Vega, S. B., & Nevárez-Moorillón, G. V. (2018). Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00050 Lorenzini, M., & Zapparoli, G. (2020). Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. International Journal of Food Microbiology, 319, 108505. https://doi.org/10.1016/j.ijfoodmicro.2019.108505 M. (2009). Brock Biologia De Los Microorganismos (12.a ed.). Pearson Educación. Mamphogoro, T. P., Babalola, O. O., & Aiyegoro, O. A. (2020). Exploitation of epiphytic bacterial antagonists for the management of post-harvest diseases of sweet pepper and other fresh produce a viable option. Biocontrol Science and Technology, 30(8), 741-761. https://doi.org/10.1080/09583157.2020.1775175 Martinez, A. (2020). 40.Enfermedades más comunes de plantas ornamentales en Georgia. La Universidad de Georgia. https://secure.caes.uga.edu/extension/publications/files/pdf/B%201238-SP_6.PDF Melander, R. J., Zurawski, D. V., & Melander, C. (2018). Narrow-spectrum antibacterial agents. MedChemComm, 9(1), 12-21. https://doi.org/10.1039/c7md00528h Miao, Y., Rong, M., Li, M., He, H., Zhang, L., Zhang, S., Liu, C., Zhu, Y., Deng, Y. L., Chen, P. P., Zeng, J. Y., Zhong, R., Mei, S. R., Miao, X. P., & Zeng, Q. (2021). Serum concentrations of organochlorine pesticides, biomarkers of oxidative stress, and risk of breast cancer. Environmental Pollution, 286, 117386. https://doi.org/10.1016/j.envpol.2021.117386 Michigan Medicine. (2019). Carbohydrate Food List. University of Michigan. https://www.med.umich.edu/1libr/MEND/CarbList.pdf Mitra, S. (2021). 69.Posharvest Management of Horticultural Crops (1.a ed.) [Libro electrónico]. JAYA PUBLISHING HOUSE. https://www.researchgate.net/publication/353355432_Postharvest_Diseases_of_Horticultural_Crops Moretto, C., Cervantes, A. L. L., Batista Filho, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. https://doi.org/10.1016/j.scienta.2013.11.019 Nifakos, K., Tsalgatidou, P. C., Thomloudi, E. E., Skagia, A., Kotopoulis, D., Baira, E., Delis, C., Papadimitriou, K., Markellou, E., Venieraki, A., & Katinakis, P. (2021). Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. Plants, 10(8), 1716. https://doi.org/10.3390/plants10081716 Nunes, C. A. (2011). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. https://doi.org/10.1007/s10658-011-9919-7 Nunes, C., Usall, J., Teixido, N., Fons, E., & Vinas, I. (2002). Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology, 92(2), 247-255. https://doi.org/10.1046/j.1365-2672.2002.01524.x Parisa, M., Elif, T., Recep, K., & Merve ¿enol, K. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(No. 3), 134-143. https://doi.org/10.17221/55/2016-pps Peles, F., Sipos, P., Kovács, S., Gy¿ri, Z., Pócsi, I., & Pusztahelyi, T. (2021). Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins, 13(2), 104. https://doi.org/10.3390/toxins13020104 Polazzo, F., dos Anjos, T. B. O., Arenas-Sánchez, A., Romo, S., Vighi, M., & Rico, A. (2022). Effect of multiple agricultural stressors on freshwater ecosystems: The role of community structure, trophic status, and biodiversity-functioning relationships on ecosystem responses. Science of The Total Environment, 807, 151052. https://doi.org/10.1016/j.scitotenv.2021.151052 Ram, R. M., Keswani, C., Bisen, K., Tripathi, R., Singh, S. P., & Singh, H. B. (2018). Biocontrol Technology. Omics Technologies and Bio-Engineering, 177-190. https://doi.org/10.1016/b978-0-12-815870-8.00010-3 Ramírez, M. (2016). 46.Extracción y caracterización de metabolitos secundarios a partir de Bacillus thuringiensis. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA. https://repositorioinstitucional.buap.mx/bitstream/handle/20.500.12371/2246/081116T.pdf?sequence=1&isAllowed=y Ren, X., Zhang, Q., Zhang, W., Mao, J., & Li, P. (2020). Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins, 12(1), 24. https://doi.org/10.3390/toxins12010024 Ruiz, B. D. (2020). 43.Estado general de las pérdidas y desperdicios de alimentos: retos para la gastronomía. Universidad ECCI. https://repositorio.ecci.edu.co/bitstream/handle/001/974/Estado%20general%20de%20las%20pérdidas%20y%20desperdicios%20de%20alimentos%20retos%20para%20la%20gastronom%C3%ADa%20colombiana.pdf?sequence=1 Sandoval-Insausti, H., Chiu, Y. H., Wang, Y. X., Hart, J. E., Bhupathiraju, S. N., Mínguez-Alarcón, L., Ding, M., Willett, W. C., Laden, F., & Chavarro, J. E. (2022). Intake of fruits and vegetables according to pesticide residue status in relation to all-cause and disease-specific mortality: Results from three prospective cohort studies. Environment International, 159, 107024. https://doi.org/10.1016/j.envint.2021.107024 Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. https://doi.org/10.1080/13102818.2017.1286950 Shi, J., Liu, A., Li, X., & Chen, W. (2012). Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putidaMGP1. Journal of the Science of Food and Agriculture, 93(3), 568-574. https://doi.org/10.1002/jsfa.5831 Siahmoshteh, F., Siciliano, I., Banani, H., Hamidi-Esfahani, Z., Razzaghi-Abyaneh, M., Gullino, M. L., & Spadaro, D. (2017). Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology, 254, 47-53. https://doi.org/10.1016/j.ijfoodmicro.2017.05.011 Singh, S., Kumar, V., Datta, S., Singh, S., Dhanjal, D. S., Dhaka, V., Sharma, K., & Singh, J. (2021). Commercial production and formulation of microbial biocontrol agents. Food Security and Plant Disease Management, 241-256. https://doi.org/10.1016/b978-0-12-821843-3.00014-3 Singh, V. K., Singh, A. K., & Kumar, A. (2017). Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech, 7(4). https://doi.org/10.1007/s13205-017-0896-1 Slininger, P. J., Schisler, D. A., Ericsson, L. D., Brandt, T. L., Jo Frazier, M., Woodell, L. K., Olsen, N. L., & Kleinkopf, G. E. (2007). Biological control of post-harvest late blight of potatoes. Biocontrol Science and Technology, 17(6), 647-663. https://doi.org/10.1080/09583150701408881 Srikhong, P., Lertmongkonthum, K., Sowanpreecha, R., & Rerngsamran, P. (2018). Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl, 63(6), 833-842. https://doi.org/10.1007/s10526-018-9902-8 Swain, M., & Ray, R. (2009). Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiological Research, 164(2), 121-130. https://doi.org/10.1016/j.micres.2006.10.009 Tamboli, C. P. (2004). Dysbiosis in inflammatory bowel disease. Gut, 53(1), 1-4. https://doi.org/10.1136/gut.53.1.1 Tekiner, N., Kotan, R., Tozlu, E., & Dada¿o¿lu, F. (2020). Biological Control of Coniella granati Saccardo in Pomegranate. Universal Journal of Agricultural Research, 8(1), 18-24. https://doi.org/10.13189/ujar.2020.080103 Torres, R., TeixidÓ, N., Usall, J., Abadias, M., & ViÑAs, I. (2005). Post-harvest control of Penicillium expansum on pome fruits by the bacterium Pantoea ananatis CPA-3. The Journal of Horticultural Science and Biotechnology, 80(1), 75-81. https://doi.org/10.1080/14620316.2005.11511895 Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & de Los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1). https://doi.org/10.18781/r.mex.fit.1706-5 Wafaa, M. H., Abd El Kareem, F. K., & Abo Hussein Shabaan, A. (2013). Bioprocessing of Brevibacillus brevis and Bacillus polymyxa: a potential biocontrol agents of gray mould disease of strawberry fruits. Current Opinion in Biotechnology, 24, S45. https://doi.org/10.1016/j.copbio.2013.05.102 Yadav, S. K. (2010). Pesticide Applications-Threat to Ecosystems. Journal of Human Ecology, 32(1), 37-45. https://doi.org/10.1080/09709274.2010.11906319 Zhao, X., Silva, M. B. R. D., van der Linden, I., Franco, B. D. G. M., & Uyttendaele, M. (2021). Behavior of the Biological Control Agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.626029 ZHOU, T., SCHNEIDER, K., & LI, X. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126(1-2), 180-185. https://doi.org/10.1016/j.ijfoodmicro.2008.05.020 Liu, J., Wisniewski, M., Artlip, T., Sui, Y., Droby, S., & Norelli, J. (2013). The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 85, 203-209. https://doi.org/10.1016/j.postharvbio.2013.06.007 Jiang, Z., Li, R., Tang, Y., Cheng, Z., Qian, M., Li, W., & Shao, Y. (2022). Transcriptome Analysis Reveals the Inducing Effect of Bacillus siamensis on Disease Resistance in Postharvest Mango Fruit. Foods, 11(1), 107. https://doi.org/10.3390/foods11010107 Vleesschauwer, D. D. (2007). Using Serratia plymuthica to control fungal pathogens of plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(046). https://doi.org/10.1079/pavsnnr20072046 Procolombia. (2019). Cómo funciona el sector floricultor en Colombia Colombiatrade. https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia |
dc.rights.license.spa.fl_str_mv |
Attribution-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
36 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Microbiología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/839b987a-c894-4a98-b8eb-72306fdfc5b4/download https://repositorio.uniandes.edu.co/bitstreams/a2b8d173-5beb-465d-a043-a179d8eef460/download https://repositorio.uniandes.edu.co/bitstreams/d3640130-4751-4e33-8832-92385b2db685/download https://repositorio.uniandes.edu.co/bitstreams/a614ab67-c810-4b8a-bce2-ce42aabae1c0/download https://repositorio.uniandes.edu.co/bitstreams/1f1b254d-dd7f-4f90-9080-ed5c2df7b5bc/download https://repositorio.uniandes.edu.co/bitstreams/859dd888-2747-46ab-93aa-6695b4254967/download https://repositorio.uniandes.edu.co/bitstreams/3309d3cd-f19f-4661-8068-ba2683af3846/download https://repositorio.uniandes.edu.co/bitstreams/adff039d-7d55-4250-b7a9-8ec83744480c/download |
bitstream.checksum.fl_str_mv |
7e336401616dd96fb8ffd2b288ab8548 07821503ef4e5fc3a44679fd5563c35e 45034b85643cdac03e8b3246354aef0b 42e777e1942b8860d38b362c1fcbacd7 5aa5c691a1ffe97abd12c2966efcb8d6 f7d494f61e544413a13e6ba1da2089cd 8cb1ebf1938ced2e6bc92a1cf15d9672 4491fe1afb58beaaef41a73cf7ff2e27 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134082723708928 |
spelling |
Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cárdenas Toquica, Martha Emilianavirtual::17763-1Mora Cataño, Camilo1267e8c6-1be4-4430-8b01-8fbd33dff3316002022-07-25T16:07:57Z2022-07-25T16:07:57Z2022-07-23http://hdl.handle.net/1992/59126instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La presente monografía refleja el estado del arte en la investigación de las bacterias como potenciales agentes de biocontrol, las características mas importantes tanto de las bacterias como de las pruebas que se deben realizar, y algunos puntos que se consideran importantes para el futuro.En este trabajo de grado se realizó una revisión sistemática de los artículos encontrados en la base de datos Scoups relacionados con el uso de bacterias para biocontrol de patógenos en poscosecha, y como estos conocimientos se aplican para la creación de productos comerciales para el biocontrol de patógenos. Esto incluye mecanismos de acción, metodologías experimentales, parámetros de importancia, y productos actualmente empleados.MicrobiólogoPregrado36 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasBacterias como potenciales biocontroladores de patógenos en poscosechaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPoscosechaBiocontrolBacteriasPesticidasMicrobiologíaAbriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201¿232. https://doi.org/10.1111/j.1574-6976.2010.00244.xAktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. https://doi.org/10.2478/v10102-009-0001-7Arrow Scientific. (2013). pH values of foods and food products. https://www.arrowscientific.com.au/index.phpoption=com_content&view=article&id=61:ph-values-of-foods-and-food-products&catid=17&Itemid=31Babbal, Adivitiya, & Khasa, Y. P. (2017). Microbes as Biocontrol Agents. Probiotics and Plant Health, 507-552. https://doi.org/10.1007/978-981-10-3473-2_24Berrios-Rodriguez, A., Olanya, O., Ukuku, D., Niemira, B., Orellana, L., Mukhopadhyay, S., Cassidy, J., & Boyd, G. (2020). Inactivation of Listeria monocytogenes on post-harvest carrot and tomato by gamma radiation, sanitizer, biocontrol treatments and their combinations. LWT, 118, 108805. https://doi.org/10.1016/j.lwt.2019.108805Bosch, A. (2006, octubre). Acidez gástrica. Elsevier. https://www.elsevier.es/es-revista-offarm-4-pdf-13094152Bridges, M. A., & Mattice, M. R. (1939). Over two thousand estimations of the ph of representative foods*. American Journal of Digestive Diseases, 6(7), 440-449. https://doi.org/10.1007/bf02996505CABI. (2020, 24 diciembre). Product Search BioProtection Portal. Portal de Bioprotección. https://bioprotectionportal.com/es/productsearch?country=CO&lng=en&occupation=Other&pest=91026762&filter=pestCalvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz De Tosetti, M. I. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251-257. https://doi.org/10.1016/j.ijfoodmicro.2006.07.003Center for Food Safety and Applied Nutrition. (2022, 17 febrero). Science and History of GMOs and Other Food Modification Processes. U.S. Food and Drug Administration. https://www.fda.gov/food/agricultural-biotechnology/science-and-history-gmos-and-other-food-modification-processesChen, C., Cao, Z., Li, J., Tao, C., Feng, Y., & Han, Y. (2020). A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biological Control, 148, 104306. https://doi.org/10.1016/j.biocontrol.2020.104306Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2007). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30(5), 919-923. https://doi.org/10.1007/s10529-007-9626-9Coates, L.M., and Johnson, G.I. (1997).Postharvest diseases of fruit and vegetables. In J. Brown, H. Ogle, (Ed) Plant Pathogens and Plant Diseases, (pp.533-547). Rockvale Publications.Dahiri, B., Martín-Reina, J., Carbonero-Aguilar, P., Aguilera-Velázquez, J. R., Bautista, J., & Moreno, I. (2021). Impact of Pesticide Exposure among Rural and Urban Female Population. An Overview. International Journal of Environmental Research and Public Health, 18(18), 9907. https://doi.org/10.3390/ijerph18189907DANE. (2019). Encuesta Nacional Agropecuaria. https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdfDepartamento Nacional de Planeación (DNP). (2016). 65.Pérdida y desperdicio de alimentos en Colombia. DNP. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdfDroby, S. (2006). improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae, 709, 45-52. https://doi.org/10.17660/actahortic.2006.709.5Elad, Y., & Stewart, A. (2007). Microbial Control of Botrytis spp. Botrytis: Biology, Pathology and Control, 223-241. https://doi.org/10.1007/978-1-4020-2626-3_13FAO. (2011). Global food losses and food waste. https://www.fao.org/3/mb060e/mb060e00.htmFu, G., Huang, S., Ye, Y., Wu, Y., Cen, Z., & Lin, S. (2010). Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases. Biological Control, 55(1), 1-10. https://doi.org/10.1016/j.biocontrol.2010.05.001Gatto, N. M., Ogata, P., & Lytle, B. (2021). Farming, Pesticides, and Brain Cancer: A 20-Year Updated Systematic Literature Review and Meta-Analysis. Cancers, 13(17), 4477. https://doi.org/10.3390/cancers13174477Gong, A., Sun, G., Zhao, Z., Liao, Y., & Zhang, J. (2020). Staphylococcus saprophyticus L-38 produces volatile 3,3-dimethyl-1,2-epoxybutane with strong inhibitory activity against Aspergillus flavus germination and aflatoxin production. World Mycotoxin Journal, 13(2), 247-258. https://doi.org/10.3920/wmj2019.2495Gould, M., Nelson, L. M., Waterer, D., & Hynes, R. K. (2008). Biocontrol ofFusarium sambucinum, dry rot of potato, bySerratia plymuthica5-6. Biocontrol Science and Technology, 18(10), 1005-1016. https://doi.org/10.1080/09583150802478189Helbig. (2001). Biological Control of Botrytis cinerea Pers. ex Fr. in Strawberry by Paenibacillus polymyxa (Isolate 18191). Journal of Phytopathology, 149(5), 265¿273. https://doi.org/10.1046/j.1439-0434.2001.00609.xHeydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10(4), 273-290. https://doi.org/10.3923/jbs.2010.273.290Icaza-Chávez, M. (2013). Gut Microbiota in Health and Disease. Revista de Gastroenterología de México, 78(4), 240¿248. https://doi.org/10.1016/j.rgmx.2013.04.004Ilhan, K., & Karabulut, O. A. (2013). Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. BioControl, 58(4), 457-470. https://doi.org/10.1007/s10526-012-9503-xInstituto Colombiano Agropecuario. (2022). 38.Empresas comercializadoras de plaguicidas químicos de uso agrícola. ICA. https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/estadisticas/bd_empresas-plaguicidas-31-03-2022.aspxInternational Agency for Research on Cancer (IARC). (2022). List of Classifications IARC Monographs on the Identification of Carcinogenic Hazards to Humans. World Health Organization. https://monographs.iarc.who.int/list-of-classificationsKaralexi, M. A., Tagkas, C. F., Markozannes, G., Tseretopoulou, X., Hernández, A. F., Schüz, J., Halldorsson, T. I., Psaltopoulou, T., Petridou, E. T., Tzoulaki, I., & Ntzani, E. E. (2021). Exposure to pesticides and childhood leukemia risk: A systematic review and meta-analysis. Environmental Pollution, 285, 117376. https://doi.org/10.1016/j.envpol.2021.117376Kotan, R., Dikbas, N., & Bostan, H. (2009). Biological control of post harvest disease caused by Aspergillus flavus on stored lemon fruits. African Journal of Biotechnology, 8, 209-214. https://doi.org/10.5897/AJB2009.000-9038Ktenioudaki, A., O'Donnell, C. P., Emond, J. P., & do Nascimento Nunes, M. C. (2021). Blueberry supply chain: Critical steps impacting fruit quality and application of a boosted regression tree model to predict weight loss. Postharvest Biology and Technology, 179, 111590. https://doi.org/10.1016/j.postharvbio.2021.111590Laboratory Safety Manual. 4th Ed. World Health Organization (WHO), 2020Lahkar, J., Goswami, D., Deka, S., & Ahmed, G. (2017). Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli. European Journal of Plant Pathology, 150(1), 57-71. https://doi.org/10.1007/s10658-017-1252-3Lahlali, R., Aksissou, W., Lyousfi, N., Ezrari, S., Blenzar, A., Tahiri, A., Ennahli, S., Hrusti, J., MacLean, D., & Amiri, S. (2020). Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microbial Pathogenesis, 139, 103914. https://doi.org/10.1016/j.micpath.2019.103914Lamine Senghor, A., Liang, W. J., & Ho, W. C. (2007). Integrated control of Colletotrichum gloeosporioides on mango fruit in Taiwan by the combination of Bacillus subtilis and fruit bagging. Biocontrol Science and Technology, 17(8), 865-870. https://doi.org/10.1080/09583150701527409Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A., & Coton, E. (2017). Antifungal Microbial Agents for Food Biopreservation¿A Review. Microorganisms, 5(3), 37. https://doi.org/10.3390/microorganisms5030037Li, X., Zhang, M., Qi, D., Zhou, D., Qi, C., Li, C., Liu, S., Xiang, D., Zhang, L., Xie, J., & Wang, W. (2021). Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.735732Linares-Morales, J. R., Gutiérrez-Méndez, N., Rivera-Chavira, B. E., Pérez-Vega, S. B., & Nevárez-Moorillón, G. V. (2018). Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00050Lorenzini, M., & Zapparoli, G. (2020). Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. International Journal of Food Microbiology, 319, 108505. https://doi.org/10.1016/j.ijfoodmicro.2019.108505M. (2009). Brock Biologia De Los Microorganismos (12.a ed.). Pearson Educación.Mamphogoro, T. P., Babalola, O. O., & Aiyegoro, O. A. (2020). Exploitation of epiphytic bacterial antagonists for the management of post-harvest diseases of sweet pepper and other fresh produce a viable option. Biocontrol Science and Technology, 30(8), 741-761. https://doi.org/10.1080/09583157.2020.1775175Martinez, A. (2020). 40.Enfermedades más comunes de plantas ornamentales en Georgia. La Universidad de Georgia. https://secure.caes.uga.edu/extension/publications/files/pdf/B%201238-SP_6.PDFMelander, R. J., Zurawski, D. V., & Melander, C. (2018). Narrow-spectrum antibacterial agents. MedChemComm, 9(1), 12-21. https://doi.org/10.1039/c7md00528hMiao, Y., Rong, M., Li, M., He, H., Zhang, L., Zhang, S., Liu, C., Zhu, Y., Deng, Y. L., Chen, P. P., Zeng, J. Y., Zhong, R., Mei, S. R., Miao, X. P., & Zeng, Q. (2021). Serum concentrations of organochlorine pesticides, biomarkers of oxidative stress, and risk of breast cancer. Environmental Pollution, 286, 117386. https://doi.org/10.1016/j.envpol.2021.117386Michigan Medicine. (2019). Carbohydrate Food List. University of Michigan. https://www.med.umich.edu/1libr/MEND/CarbList.pdfMitra, S. (2021). 69.Posharvest Management of Horticultural Crops (1.a ed.) [Libro electrónico]. JAYA PUBLISHING HOUSE. https://www.researchgate.net/publication/353355432_Postharvest_Diseases_of_Horticultural_CropsMoretto, C., Cervantes, A. L. L., Batista Filho, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. https://doi.org/10.1016/j.scienta.2013.11.019Nifakos, K., Tsalgatidou, P. C., Thomloudi, E. E., Skagia, A., Kotopoulis, D., Baira, E., Delis, C., Papadimitriou, K., Markellou, E., Venieraki, A., & Katinakis, P. (2021). Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. Plants, 10(8), 1716. https://doi.org/10.3390/plants10081716Nunes, C. A. (2011). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. https://doi.org/10.1007/s10658-011-9919-7Nunes, C., Usall, J., Teixido, N., Fons, E., & Vinas, I. (2002). Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology, 92(2), 247-255. https://doi.org/10.1046/j.1365-2672.2002.01524.xParisa, M., Elif, T., Recep, K., & Merve ¿enol, K. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(No. 3), 134-143. https://doi.org/10.17221/55/2016-ppsPeles, F., Sipos, P., Kovács, S., Gy¿ri, Z., Pócsi, I., & Pusztahelyi, T. (2021). Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins, 13(2), 104. https://doi.org/10.3390/toxins13020104Polazzo, F., dos Anjos, T. B. O., Arenas-Sánchez, A., Romo, S., Vighi, M., & Rico, A. (2022). Effect of multiple agricultural stressors on freshwater ecosystems: The role of community structure, trophic status, and biodiversity-functioning relationships on ecosystem responses. Science of The Total Environment, 807, 151052. https://doi.org/10.1016/j.scitotenv.2021.151052Ram, R. M., Keswani, C., Bisen, K., Tripathi, R., Singh, S. P., & Singh, H. B. (2018). Biocontrol Technology. Omics Technologies and Bio-Engineering, 177-190. https://doi.org/10.1016/b978-0-12-815870-8.00010-3Ramírez, M. (2016). 46.Extracción y caracterización de metabolitos secundarios a partir de Bacillus thuringiensis. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA. https://repositorioinstitucional.buap.mx/bitstream/handle/20.500.12371/2246/081116T.pdf?sequence=1&isAllowed=yRen, X., Zhang, Q., Zhang, W., Mao, J., & Li, P. (2020). Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins, 12(1), 24. https://doi.org/10.3390/toxins12010024Ruiz, B. D. (2020). 43.Estado general de las pérdidas y desperdicios de alimentos: retos para la gastronomía. Universidad ECCI. https://repositorio.ecci.edu.co/bitstream/handle/001/974/Estado%20general%20de%20las%20pérdidas%20y%20desperdicios%20de%20alimentos%20retos%20para%20la%20gastronom%C3%ADa%20colombiana.pdf?sequence=1Sandoval-Insausti, H., Chiu, Y. H., Wang, Y. X., Hart, J. E., Bhupathiraju, S. N., Mínguez-Alarcón, L., Ding, M., Willett, W. C., Laden, F., & Chavarro, J. E. (2022). Intake of fruits and vegetables according to pesticide residue status in relation to all-cause and disease-specific mortality: Results from three prospective cohort studies. Environment International, 159, 107024. https://doi.org/10.1016/j.envint.2021.107024Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. https://doi.org/10.1080/13102818.2017.1286950Shi, J., Liu, A., Li, X., & Chen, W. (2012). Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putidaMGP1. Journal of the Science of Food and Agriculture, 93(3), 568-574. https://doi.org/10.1002/jsfa.5831Siahmoshteh, F., Siciliano, I., Banani, H., Hamidi-Esfahani, Z., Razzaghi-Abyaneh, M., Gullino, M. L., & Spadaro, D. (2017). Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology, 254, 47-53. https://doi.org/10.1016/j.ijfoodmicro.2017.05.011Singh, S., Kumar, V., Datta, S., Singh, S., Dhanjal, D. S., Dhaka, V., Sharma, K., & Singh, J. (2021). Commercial production and formulation of microbial biocontrol agents. Food Security and Plant Disease Management, 241-256. https://doi.org/10.1016/b978-0-12-821843-3.00014-3Singh, V. K., Singh, A. K., & Kumar, A. (2017). Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech, 7(4). https://doi.org/10.1007/s13205-017-0896-1Slininger, P. J., Schisler, D. A., Ericsson, L. D., Brandt, T. L., Jo Frazier, M., Woodell, L. K., Olsen, N. L., & Kleinkopf, G. E. (2007). Biological control of post-harvest late blight of potatoes. Biocontrol Science and Technology, 17(6), 647-663. https://doi.org/10.1080/09583150701408881Srikhong, P., Lertmongkonthum, K., Sowanpreecha, R., & Rerngsamran, P. (2018). Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl, 63(6), 833-842. https://doi.org/10.1007/s10526-018-9902-8Swain, M., & Ray, R. (2009). Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiological Research, 164(2), 121-130. https://doi.org/10.1016/j.micres.2006.10.009Tamboli, C. P. (2004). Dysbiosis in inflammatory bowel disease. Gut, 53(1), 1-4. https://doi.org/10.1136/gut.53.1.1Tekiner, N., Kotan, R., Tozlu, E., & Dada¿o¿lu, F. (2020). Biological Control of Coniella granati Saccardo in Pomegranate. Universal Journal of Agricultural Research, 8(1), 18-24. https://doi.org/10.13189/ujar.2020.080103Torres, R., TeixidÓ, N., Usall, J., Abadias, M., & ViÑAs, I. (2005). Post-harvest control of Penicillium expansum on pome fruits by the bacterium Pantoea ananatis CPA-3. The Journal of Horticultural Science and Biotechnology, 80(1), 75-81. https://doi.org/10.1080/14620316.2005.11511895Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & de Los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1). https://doi.org/10.18781/r.mex.fit.1706-5Wafaa, M. H., Abd El Kareem, F. K., & Abo Hussein Shabaan, A. (2013). Bioprocessing of Brevibacillus brevis and Bacillus polymyxa: a potential biocontrol agents of gray mould disease of strawberry fruits. Current Opinion in Biotechnology, 24, S45. https://doi.org/10.1016/j.copbio.2013.05.102Yadav, S. K. (2010). Pesticide Applications-Threat to Ecosystems. Journal of Human Ecology, 32(1), 37-45. https://doi.org/10.1080/09709274.2010.11906319Zhao, X., Silva, M. B. R. D., van der Linden, I., Franco, B. D. G. M., & Uyttendaele, M. (2021). Behavior of the Biological Control Agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.626029ZHOU, T., SCHNEIDER, K., & LI, X. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126(1-2), 180-185. https://doi.org/10.1016/j.ijfoodmicro.2008.05.020Liu, J., Wisniewski, M., Artlip, T., Sui, Y., Droby, S., & Norelli, J. (2013). The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 85, 203-209. https://doi.org/10.1016/j.postharvbio.2013.06.007Jiang, Z., Li, R., Tang, Y., Cheng, Z., Qian, M., Li, W., & Shao, Y. (2022). Transcriptome Analysis Reveals the Inducing Effect of Bacillus siamensis on Disease Resistance in Postharvest Mango Fruit. Foods, 11(1), 107. https://doi.org/10.3390/foods11010107Vleesschauwer, D. D. (2007). Using Serratia plymuthica to control fungal pathogens of plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(046). https://doi.org/10.1079/pavsnnr20072046Procolombia. (2019). Cómo funciona el sector floricultor en Colombia Colombiatrade. https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia201531757Publicationcc60ebb6-b856-4f56-b942-f2b217eb6c75virtual::17763-1cc60ebb6-b856-4f56-b942-f2b217eb6c75virtual::17763-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000296775virtual::17763-1THUMBNAILBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdf.jpgBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdf.jpgIM Thumbnailimage/jpeg7335https://repositorio.uniandes.edu.co/bitstreams/839b987a-c894-4a98-b8eb-72306fdfc5b4/download7e336401616dd96fb8ffd2b288ab8548MD56Autorizacion-Camilo Mora.pdf.jpgAutorizacion-Camilo Mora.pdf.jpgGenerated Thumbnailimage/jpeg11000https://repositorio.uniandes.edu.co/bitstreams/a2b8d173-5beb-465d-a043-a179d8eef460/download07821503ef4e5fc3a44679fd5563c35eMD58ORIGINALBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdfBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdfTrabajo de gradoapplication/pdf979551https://repositorio.uniandes.edu.co/bitstreams/d3640130-4751-4e33-8832-92385b2db685/download45034b85643cdac03e8b3246354aef0bMD53Autorizacion-Camilo Mora.pdfAutorizacion-Camilo Mora.pdfHIDEapplication/pdf175278https://repositorio.uniandes.edu.co/bitstreams/a614ab67-c810-4b8a-bce2-ce42aabae1c0/download42e777e1942b8860d38b362c1fcbacd7MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/1f1b254d-dd7f-4f90-9080-ed5c2df7b5bc/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/859dd888-2747-46ab-93aa-6695b4254967/downloadf7d494f61e544413a13e6ba1da2089cdMD52TEXTBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdf.txtBacterias como potenciales biocontroladores de patogenos en poscosecha - Camilo Mora.pdf.txtExtracted texttext/plain102679https://repositorio.uniandes.edu.co/bitstreams/3309d3cd-f19f-4661-8068-ba2683af3846/download8cb1ebf1938ced2e6bc92a1cf15d9672MD55Autorizacion-Camilo Mora.pdf.txtAutorizacion-Camilo Mora.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/adff039d-7d55-4250-b7a9-8ec83744480c/download4491fe1afb58beaaef41a73cf7ff2e27MD571992/59126oai:repositorio.uniandes.edu.co:1992/591262024-03-13 16:06:32.397http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |