Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention

This work presents a ZINB model-based denoising autoencoder that offers interpretable deep embeddings through a gene attention mechanism for single-cell RNA-seq clustering. Our method performs a dimensionality reduction into a latent space that embeds semantic information from gene expression inputs...

Full description

Autores:
Forigua Díaz, Cristhian David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/63770
Acceso en línea:
http://hdl.handle.net/1992/63770
Palabra clave:
scRNA-seq
Autoencoder
Gene attention
Interpretability
Clustering
Biología
Ingeniería
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNIANDES2_41dd30d72ca453660feae934846f0621
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/63770
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
title Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
spellingShingle Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
scRNA-seq
Autoencoder
Gene attention
Interpretability
Clustering
Biología
Ingeniería
title_short Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
title_full Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
title_fullStr Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
title_full_unstemmed Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
title_sort Interpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention
dc.creator.fl_str_mv Forigua Díaz, Cristhian David
dc.contributor.advisor.none.fl_str_mv Duitama Castellanos, Jorge Alexander
dc.contributor.author.none.fl_str_mv Forigua Díaz, Cristhian David
dc.subject.keyword.none.fl_str_mv scRNA-seq
Autoencoder
Gene attention
Interpretability
Clustering
topic scRNA-seq
Autoencoder
Gene attention
Interpretability
Clustering
Biología
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Biología
Ingeniería
description This work presents a ZINB model-based denoising autoencoder that offers interpretable deep embeddings through a gene attention mechanism for single-cell RNA-seq clustering. Our method performs a dimensionality reduction into a latent space that embeds semantic information from gene expression inputs and uses the latent representations for further clustering into cell groups. Our gene attention mechanism offers a sense of interpretability to how the autoencoder is embedding the gene expression data and offers the possibility to perform gene analysis for clustering. We perform extensive ablation experiments on the configuration of the autoencoder configuration and the attention mechanism. We test our method on six scRNA-seq datasets with different cell types. The results indicate that our method is competitive compared to previous approaches. In particular, it outperforms previous methods on the 10XPBMC and Worm Neuron Cells datasets. Functional enrichment analysis of genes highlighted by attention vectors offers interpretability on how the network processes the gene expression data. The gene analysis shows a correspondence between what the network learns and the cell types in the datasets.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-16
dc.date.accessioned.none.fl_str_mv 2023-01-13T19:21:28Z
dc.date.available.none.fl_str_mv 2023-01-13T19:21:28Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/63770
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/63770
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] ANDOR, N., SIMONDS, E. F., CZERWINSKI, D. K., CHEN, J., GRIMES, S. M., WOODBOUWENS, C., ZHENG, G. X., KUBIT, M. A., GREER, S., WEISS, W. A., ET AL. Singlecell rna-seq of follicular lymphoma reveals malignant b-cell types and coexpression of t-cell immune checkpoints. Blood, The Journal of the American Society of Hematology 133, 10 (2019), 1119-1129.
[2] BAGNOLI, J. W., ZIEGENHAIN, C., JANJIC, A., WANGE, L. E., VIETH, B., PAREKH, S., GEUDER, J., HELLMANN, I., AND ENARD, W. Sensitive and powerful single-cell rna sequencing using mcscrb-seq. Nature communications 9, 1 (2018), 1-8.
[3] BUTLER, A., HOFFMAN, P., SMIBERT, P., PAPALEXI, E., AND SATIJA, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology 36, 5 (2018), 411-420.
[4] CAO, J., PACKER, J. S., RAMANI, V., CUSANOVICH, D. A., HUYNH, C., DAZA, R., QIU, X., LEE, C., FURLAN, S. N., STEEMERS, F. J., ET AL. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 6352 (2017), 661-667.
[5] CHAUDHRY, F., ISHERWOOD, J., BAWA, T., PATEL, D., GURDZIEL, K., LANFEAR, D. E., RUDEN, D. M., AND LEVY, P. D. Single-cell rna sequencing of the cardiovascular system: New looks for old diseases. Frontiers in Cardiovascular Medicine 6 (2019). 10.3389/fcvm.2019.00173.
[6] CHEN, C., LIAO, Y., AND PENG, G. Connecting past and present: Single-cell lineage tracing. Protein amp; Cell 13, 11 (2022), 790-807. 10.1007/s13238-022-00913-7.
[7] CHEN, G., NING, B., AND SHI, T. Single-cell rna-seq technologies and related computational data analysis. Frontiers in Genetics 10 (2019). 10.3389/fgene.2019.00317.
[8] CIORTAN, M., AND DEFRANCE, M. GNN-based embedding for clustering scRNA-seq data. Bioinformatics 38, 4 (11 2021), 1037¿1044. 10.1093/bioinformatics/btab787.
[9] CORNWELL, J. A., HALLETT, R. M., DER MAUER, S. A., MOTAZEDIAN, A., SCHROEDER, T., DRAPER, J. S., HARVEY, R. P., AND NORDON, R. E. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis. Scientific Reports 6, 1 (2016). 10.1038/srep27100.
[10] DENG, Y., BAO, F., DAI, Q., WU, L. F., AND ALTSCHULER, S. J. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nature methods 16, 4 (2019), 311-314.
[11] DING, J., CONDON, A., AND SHAH, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature communications 9, 1 (2018), 1-13.
[12] ERASLAN, G., SIMON, L. M., MIRCEA, M., MUELLER, N. S., AND THEIS, F. J. Singlecell rna-seq denoising using a deep count autoencoder. Nature Communications 10, 1 (2019). 10.1038/s41467-018-07931-2.
[13] FAN, X., TANG, D., LIAO, Y., LI, P., ZHANG, Y., WANG, M., LIANG, F., WANG, X., GAO, Y., WEN, L., ET AL. Single-cell rna-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biology 18, 12 (2020), e3001017.
[14] GE, S. X., JUNG, D., AND YAO, R. Shinygo: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 8 (2020), 2628-2629.
[15] GIERAHN, T. M., WADSWORTH, M. H., HUGHES, T. K., BRYSON, B. D., BUTLER, A., SATIJA, R., FORTUNE, S., LOVE, J. C., AND SHALEK, A. K. Seq-well: portable, low-cost rna sequencing of single cells at high throughput. Nature methods 14, 4 (2017), 395-398.
[16] GROSS, A., SCHOENDUBE, J., ZIMMERMANN, S., STEEB, M., ZENGERLE, R., AND KOLTAY, P. Technologies for single-cell isolation. International Journal of Molecular Sciences 16, 8 (2015), 16897-16919. 10.3390/ijms160816897.
[17] HAGHVERDI, L., LUN, A. T., MORGAN, M. D., AND MARIONI, J. C. Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors. Nature biotechnology 36, 5 (2018), 421-427.
[18] HAN, X., WANG, R., ZHOU, Y., FEI, L., SUN, H., LAI, S., SAADATPOUR, A., ZHOU, Z., CHEN, H., YE, F., ET AL. Mapping the mouse cell atlas by microwell-seq. Cell 172, 5 (2018), 1091-1107.
[19] HASHIMSHONY, T., SENDEROVICH, N., AVITAL, G., KLOCHENDLER, A., DE LEEUW, Y., ANAVY, L., GENNERT, D., LI, S., LIVAK, K. J., ROZENBLATT-ROSEN, O., ET AL. Cel-seq2: sensitive highly-multiplexed single-cell rna-seq. Genome biology 17, 1 (2016), 1-7.
[20] HUBERT, L., AND ARABIE, P. Comparing partitions. Journal of classification 2, 1 (1985), 193-218.
[21] HWANG, B., LEE, J. H., AND BANG, D. Single-cell rna sequencing technologies and bioinformatics pipelines. Experimental amp; Molecular Medicine 50, 8 (2018), 1-14. 10.1038/s12276-018-0071-8.
[22] INNES, B. T., AND BADER, G. D. scclustviz-single-cell rnaseq cluster assessment and visualization. F1000Research 7 (2018).
[23] JI, Z., AND JI, H. Tscan: Pseudo-time reconstruction and evaluation in single-cell rna-seq analysis. Nucleic acids research 44, 13 (2016), e117-e117.
[24] KANEHISA, M., AND GOTO, S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 1 (2000), 27-30.
[25] KESTER, L., AND VAN OUDENAARDEN, A. Single-cell transcriptomics meets lineage tracing. Cell stem cell 23, 2 (2018), 166-179.
[26] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[27] KISELEV, V. Y., KIRSCHNER, K., SCHAUB, M. T., ANDREWS, T., YIU, A., CHANDRA, T., NATARAJAN, K. N., REIK, W., BARAHONA, M., GREEN, A. R., ET AL. Sc3: consensus clustering of single-cell rna-seq data. Nature methods 14, 5 (2017), 483-486.
[28] KLEIVELAND, C. R. Peripheral Blood Mononuclear Cells. Springer International Publishing, Cham, 2015, pp. 161-167. 10.1007/978-3-319-16104-415.
[29] KOLODZIEJCZYK, A., KIM, J. K., SVENSSON, V., MARIONI, J., AND TEICHMANN, S. The technology and biology of single-cell rna sequencing. Molecular Cell 58, 4 (2015), 610-620. 10.1016/j.molcel.2015.04.005.
[30] KUMAR, M. P., DU, J., LAGOUDAS, G., JIAO, Y., SAWYER, A., DRUMMOND, D. C., LAUFFENBURGER, D. A., AND RAUE, A. Analysis of single-cell rna-seq identifies cell-cell communication associated with tumor characteristics. Cell reports 25, 6 (2018), 1458-1468.
[31] LAFZI, A., MOUTINHO, C., PICELLI, S., AND HEYN, H. Tutorial: guidelines for the experimental design of single-cell rna sequencing studies. Nature protocols 13, 12 (2018), 2742-2757.
[32] LAMBRECHTS, D., WAUTERS, E., BOECKX, B., AIBAR, S., NITTNER, D., BURTON, O., BASSEZ, A., DECALUWÉ, H., PIRCHER, A., VAN DEN EYNDE, K., ET AL. Phenotype molding of stromal cells in the lung tumor microenvironment. Nature medicine 24, 8 (2018), 1277-1289.
[33] LEE, J. Y., AND HONG, S.-H. Hematopoietic stem cells and their roles in tissue regeneration. International Journal of Stem Cells 13, 1 (2020), 1-12.
[34] LI, Y., YI, M., AND ZOU, X. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast. Scientific Reports 4, 1 (2014). 10.1038/srep05764.
[35] LIKAS, A., VLASSIS, N., AND VERBEEK, J. J. The global k-means clustering algorithm. Pattern recognition 36, 2 (2003), 451-461.
[36] LIN, P., TROUP, M., AND HO, J. W. Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data. Genome biology 18, 1 (2017), 1-11.
[37] LOPEZ, R., REGIER, J., COLE, M. B., JORDAN, M. I., AND YOSEF, N. Deep generative modeling for single-cell transcriptomics. Nature methods 15, 12 (2018), 1053-1058.
[38] MACOSKO, E. Z., BASU, A., SATIJA, R., NEMESH, J., SHEKHAR, K., GOLDMAN, M., TIROSH, I., BIALAS, A. R., KAMITAKI, N., MARTERSTECK, E. M., ET AL. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 5 (2015), 1202-1214.
[39] MACPARLAND, S. A., LIU, J. C., MA, X.-Z., INNES, B. T., BARTCZAK, A. M., GAGE, B. K., MANUEL, J., KHUU, N., ECHEVERRI, J., LINARES, I., ET AL. Single cell rna sequencing of human liver reveals distinct intrahepatic macrophage populations. Nature communications 9, 1 (2018), 1-21.
[40] MCINNES, L., HEALY, J., AND MELVILLE, J. Umap: Uniform manifold approximation and projection for dimension reduction, 2018. 10.48550/ARXIV.1802.03426.
[41] NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltzmann machines. In Icml (2010).
[42] PACKER, J., AND TRAPNELL, C. Single-cell multi-omics: an engine for new quantitative models of gene regulation. Trends in Genetics 34, 9 (2018), 653-665.
[43] PALASCA, O., SANTOS, A., STOLTE, C., GORODKIN, J., AND JENSEN, L. J. Tissues 2.0: an integrative web resource on mammalian tissue expression. Database 2018 (2018).
[44] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differentiation in pytorch.
[45] PENG, L., TIAN, X., TIAN, G., XU, J., HUANG, X., WENG, Y., YANG, J., AND ZHOU, L. Single-cell rna-seq clustering: datasets, models, and algorithms. RNA biology 17, 6 (2020), 765-783.
[46] RAND, W. M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66, 336 (1971), 846-850.
[47] REDDI, S. J., KALE, S., AND KUMAR, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019).
[48] SALIBA, A.-E., WESTERMANN, A. J., GORSKI, S. A., AND VOGEL, J. Single-cell rnaseq: Advances and future challenges. Nucleic Acids Research 42, 14 (2014), 8845-8860. 10.1093/nar/gku555.
[49] SASAGAWA, Y., DANNO, H., TAKADA, H., EBISAWA, M., TANAKA, K., HAYASHI, T., KURISAKI, A., AND NIKAIDO, I. Quartz-seq2: a high-throughput single-cell rnasequencing method that effectively uses limited sequence reads. Genome biology 19, 1 (2018), 1-24.
[50] SATIJA, R., FARRELL, J. A., GENNERT, D., SCHIER, A. F., AND REGEV, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 5 (2015), 495-502.
[51] SHEKHAR, K., LAPAN, S. W., WHITNEY, I. E., TRAN, N. M., MACOSKO, E. Z., KOWALCZYK, M., ADICONIS, X., LEVIN, J. Z., NEMESH, J., GOLDMAN, M., ET AL. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 5 (2016), 1308-1323.
[52] STREHL, A., AND GHOSH, J. Cluster ensembles¿a knowledge reuse framework for combining multiple partitions. Journal of machine learning research 3, Dec (2002), 583-617.
[53] STUART, T., AND SATIJA, R. Integrative single-cell analysis. Nature reviews genetics 20, 5 (2019), 257-272.
[54] TIAN, L., DONG, X., FREYTAG, S., LÊ CAO, K.-A., SU, S., JALALABADI, A., AMANNZALCENSTEIN, D., WEBER, T. S., SEIDI, A., JABBARI, J. S., ET AL. Benchmarking single cell rna-sequencing analysis pipelines using mixture control experiments. Nature methods 16, 6 (2019), 479-487.
[55] TIAN, T., WAN, J., SONG, Q., AND WEI, Z. Clustering single-cell rna-seq data with a model-based deep learning approach. Nature Machine Intelligence 1, 4 (2019), 191-198.
[56] TIAN, T., ZHANG, J., LIN, X., WEI, Z., AND HAKONARSON, H. Model-based deep embedding for constrained clustering analysis of single cell rna-seq data. Nature communications 12, 1 (2021), 1-12.
[57] VAN DER MAATEN, L. Learning a parametric embedding by preserving local structure. In Artificial intelligence and statistics (2009), PMLR, pp. 384-391.
[58] WOLD, S., ESBENSEN, K., AND GELADI, P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2, 1 (1987), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9. Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.
[59] WOLF, F. A., ANGERER, P., AND THEIS, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1 (2018), 1-5.
[60] XIE, J., GIRSHICK, R., AND FARHADI, A. Unsupervised deep embedding for clustering analysis. In International conference on machine learning (2016), PMLR, pp. 478-487.
[61] XU, C., AND SU, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 12 (2015), 1974-1980.
[62] XU, Y., ZHANG, Z., YOU, L., LIU, J., FAN, Z., AND ZHOU, X. scIGANs: single-cell RNAseq imputation using generative adversarial networks. Nucleic Acids Research 48, 15 (06 2020), e85-e85. 10.1093/nar/gkaa506.
[63] YAU, C., ET AL. pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC bioinformatics 17, 1 (2016), 1-11.
[64] YOUNG, M. D., MITCHELL, T. J., VIEIRA BRAGA, F. A., TRAN, M. G., STEWART, B. J., FERDINAND, J. R., COLLORD, G., BOTTING, R. A., POPESCU, D.-M., LOUDON, K. W., ET AL. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. science 361, 6402 (2018), 594-599.
[65] ZHANG, J. M., FAN, J., FAN, H. C., ROSENFELD, D., AND TSE, D. N. An interpretable framework for clustering single-cell rna-seq datasets. BMC bioinformatics 19, 1 (2018), 1-12.
[66] ZHANG, Y., ZENG, F., HAN, X., WENG, J., AND GAO, Y. Lineage tracing: Technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Research amp; Therapy 11, 1 (2020). 10.1186/s13287-020-01941-y.
[67] ZHENG, G. X., TERRY, J. M., BELGRADER, P., RYVKIN, P., BENT, Z. W., WILSON, R., ZIRALDO, S. B., WHEELER, T. D., MCDERMOTT, G. P., ZHU, J., ET AL. Massively parallel digital transcriptional profiling of single cells. Nature communications 8, 1 (2017), 1-12.
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 26 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7fbb5df2-26ea-4123-94ae-6a35565c1ae5/download
https://repositorio.uniandes.edu.co/bitstreams/75fc39b6-5536-4bb3-bee2-cdbe3a67ea72/download
https://repositorio.uniandes.edu.co/bitstreams/e73d668e-4079-44de-9bdd-3516dc821d8b/download
https://repositorio.uniandes.edu.co/bitstreams/f492adff-b124-425f-a0a1-56f4ecae7da8/download
https://repositorio.uniandes.edu.co/bitstreams/f561cfdc-84c6-480a-a86e-fd14cd68d1dc/download
https://repositorio.uniandes.edu.co/bitstreams/9faa4868-7340-4fd3-b17c-e0575544b720/download
https://repositorio.uniandes.edu.co/bitstreams/a7d30be3-eb3d-471e-91ae-6994f028db32/download
https://repositorio.uniandes.edu.co/bitstreams/0ba8d7da-9a2d-4ab7-83e5-2d11a5ccc385/download
bitstream.checksum.fl_str_mv c95c3aab35d2424da3a66d797318cb76
5911093d9908f874080a6f7be2e8e80c
5aa5c691a1ffe97abd12c2966efcb8d6
84a900c9dd4b2a10095a94649e1ce116
3ce78d5daa42fa3eb0e957803eca7a58
60b94ebdda1bfed9c2e1ffe7f54425c6
60a2d80be8e124bedbd9a254ac04cd8c
7234e62417ba177187fe9833b4f0bd50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133859445178368
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duitama Castellanos, Jorge Alexandervirtual::4014-1Forigua Díaz, Cristhian David9304be85-1128-47b6-b90c-99b9868629736002023-01-13T19:21:28Z2023-01-13T19:21:28Z2022-12-16http://hdl.handle.net/1992/63770instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work presents a ZINB model-based denoising autoencoder that offers interpretable deep embeddings through a gene attention mechanism for single-cell RNA-seq clustering. Our method performs a dimensionality reduction into a latent space that embeds semantic information from gene expression inputs and uses the latent representations for further clustering into cell groups. Our gene attention mechanism offers a sense of interpretability to how the autoencoder is embedding the gene expression data and offers the possibility to perform gene analysis for clustering. We perform extensive ablation experiments on the configuration of the autoencoder configuration and the attention mechanism. We test our method on six scRNA-seq datasets with different cell types. The results indicate that our method is competitive compared to previous approaches. In particular, it outperforms previous methods on the 10XPBMC and Worm Neuron Cells datasets. Functional enrichment analysis of genes highlighted by attention vectors offers interpretability on how the network processes the gene expression data. The gene analysis shows a correspondence between what the network learns and the cell types in the datasets.Ingeniero de Sistemas y ComputaciónPregrado26 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene AttentionTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPscRNA-seqAutoencoderGene attentionInterpretabilityClusteringBiologíaIngeniería[1] ANDOR, N., SIMONDS, E. F., CZERWINSKI, D. K., CHEN, J., GRIMES, S. M., WOODBOUWENS, C., ZHENG, G. X., KUBIT, M. A., GREER, S., WEISS, W. A., ET AL. Singlecell rna-seq of follicular lymphoma reveals malignant b-cell types and coexpression of t-cell immune checkpoints. Blood, The Journal of the American Society of Hematology 133, 10 (2019), 1119-1129.[2] BAGNOLI, J. W., ZIEGENHAIN, C., JANJIC, A., WANGE, L. E., VIETH, B., PAREKH, S., GEUDER, J., HELLMANN, I., AND ENARD, W. Sensitive and powerful single-cell rna sequencing using mcscrb-seq. Nature communications 9, 1 (2018), 1-8.[3] BUTLER, A., HOFFMAN, P., SMIBERT, P., PAPALEXI, E., AND SATIJA, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology 36, 5 (2018), 411-420.[4] CAO, J., PACKER, J. S., RAMANI, V., CUSANOVICH, D. A., HUYNH, C., DAZA, R., QIU, X., LEE, C., FURLAN, S. N., STEEMERS, F. J., ET AL. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 6352 (2017), 661-667.[5] CHAUDHRY, F., ISHERWOOD, J., BAWA, T., PATEL, D., GURDZIEL, K., LANFEAR, D. E., RUDEN, D. M., AND LEVY, P. D. Single-cell rna sequencing of the cardiovascular system: New looks for old diseases. Frontiers in Cardiovascular Medicine 6 (2019). 10.3389/fcvm.2019.00173.[6] CHEN, C., LIAO, Y., AND PENG, G. Connecting past and present: Single-cell lineage tracing. Protein amp; Cell 13, 11 (2022), 790-807. 10.1007/s13238-022-00913-7.[7] CHEN, G., NING, B., AND SHI, T. Single-cell rna-seq technologies and related computational data analysis. Frontiers in Genetics 10 (2019). 10.3389/fgene.2019.00317.[8] CIORTAN, M., AND DEFRANCE, M. GNN-based embedding for clustering scRNA-seq data. Bioinformatics 38, 4 (11 2021), 1037¿1044. 10.1093/bioinformatics/btab787.[9] CORNWELL, J. A., HALLETT, R. M., DER MAUER, S. A., MOTAZEDIAN, A., SCHROEDER, T., DRAPER, J. S., HARVEY, R. P., AND NORDON, R. E. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis. Scientific Reports 6, 1 (2016). 10.1038/srep27100.[10] DENG, Y., BAO, F., DAI, Q., WU, L. F., AND ALTSCHULER, S. J. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nature methods 16, 4 (2019), 311-314.[11] DING, J., CONDON, A., AND SHAH, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature communications 9, 1 (2018), 1-13.[12] ERASLAN, G., SIMON, L. M., MIRCEA, M., MUELLER, N. S., AND THEIS, F. J. Singlecell rna-seq denoising using a deep count autoencoder. Nature Communications 10, 1 (2019). 10.1038/s41467-018-07931-2.[13] FAN, X., TANG, D., LIAO, Y., LI, P., ZHANG, Y., WANG, M., LIANG, F., WANG, X., GAO, Y., WEN, L., ET AL. Single-cell rna-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biology 18, 12 (2020), e3001017.[14] GE, S. X., JUNG, D., AND YAO, R. Shinygo: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 8 (2020), 2628-2629.[15] GIERAHN, T. M., WADSWORTH, M. H., HUGHES, T. K., BRYSON, B. D., BUTLER, A., SATIJA, R., FORTUNE, S., LOVE, J. C., AND SHALEK, A. K. Seq-well: portable, low-cost rna sequencing of single cells at high throughput. Nature methods 14, 4 (2017), 395-398.[16] GROSS, A., SCHOENDUBE, J., ZIMMERMANN, S., STEEB, M., ZENGERLE, R., AND KOLTAY, P. Technologies for single-cell isolation. International Journal of Molecular Sciences 16, 8 (2015), 16897-16919. 10.3390/ijms160816897.[17] HAGHVERDI, L., LUN, A. T., MORGAN, M. D., AND MARIONI, J. C. Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors. Nature biotechnology 36, 5 (2018), 421-427.[18] HAN, X., WANG, R., ZHOU, Y., FEI, L., SUN, H., LAI, S., SAADATPOUR, A., ZHOU, Z., CHEN, H., YE, F., ET AL. Mapping the mouse cell atlas by microwell-seq. Cell 172, 5 (2018), 1091-1107.[19] HASHIMSHONY, T., SENDEROVICH, N., AVITAL, G., KLOCHENDLER, A., DE LEEUW, Y., ANAVY, L., GENNERT, D., LI, S., LIVAK, K. J., ROZENBLATT-ROSEN, O., ET AL. Cel-seq2: sensitive highly-multiplexed single-cell rna-seq. Genome biology 17, 1 (2016), 1-7.[20] HUBERT, L., AND ARABIE, P. Comparing partitions. Journal of classification 2, 1 (1985), 193-218.[21] HWANG, B., LEE, J. H., AND BANG, D. Single-cell rna sequencing technologies and bioinformatics pipelines. Experimental amp; Molecular Medicine 50, 8 (2018), 1-14. 10.1038/s12276-018-0071-8.[22] INNES, B. T., AND BADER, G. D. scclustviz-single-cell rnaseq cluster assessment and visualization. F1000Research 7 (2018).[23] JI, Z., AND JI, H. Tscan: Pseudo-time reconstruction and evaluation in single-cell rna-seq analysis. Nucleic acids research 44, 13 (2016), e117-e117.[24] KANEHISA, M., AND GOTO, S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 1 (2000), 27-30.[25] KESTER, L., AND VAN OUDENAARDEN, A. Single-cell transcriptomics meets lineage tracing. Cell stem cell 23, 2 (2018), 166-179.[26] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).[27] KISELEV, V. Y., KIRSCHNER, K., SCHAUB, M. T., ANDREWS, T., YIU, A., CHANDRA, T., NATARAJAN, K. N., REIK, W., BARAHONA, M., GREEN, A. R., ET AL. Sc3: consensus clustering of single-cell rna-seq data. Nature methods 14, 5 (2017), 483-486.[28] KLEIVELAND, C. R. Peripheral Blood Mononuclear Cells. Springer International Publishing, Cham, 2015, pp. 161-167. 10.1007/978-3-319-16104-415.[29] KOLODZIEJCZYK, A., KIM, J. K., SVENSSON, V., MARIONI, J., AND TEICHMANN, S. The technology and biology of single-cell rna sequencing. Molecular Cell 58, 4 (2015), 610-620. 10.1016/j.molcel.2015.04.005.[30] KUMAR, M. P., DU, J., LAGOUDAS, G., JIAO, Y., SAWYER, A., DRUMMOND, D. C., LAUFFENBURGER, D. A., AND RAUE, A. Analysis of single-cell rna-seq identifies cell-cell communication associated with tumor characteristics. Cell reports 25, 6 (2018), 1458-1468.[31] LAFZI, A., MOUTINHO, C., PICELLI, S., AND HEYN, H. Tutorial: guidelines for the experimental design of single-cell rna sequencing studies. Nature protocols 13, 12 (2018), 2742-2757.[32] LAMBRECHTS, D., WAUTERS, E., BOECKX, B., AIBAR, S., NITTNER, D., BURTON, O., BASSEZ, A., DECALUWÉ, H., PIRCHER, A., VAN DEN EYNDE, K., ET AL. Phenotype molding of stromal cells in the lung tumor microenvironment. Nature medicine 24, 8 (2018), 1277-1289.[33] LEE, J. Y., AND HONG, S.-H. Hematopoietic stem cells and their roles in tissue regeneration. International Journal of Stem Cells 13, 1 (2020), 1-12.[34] LI, Y., YI, M., AND ZOU, X. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast. Scientific Reports 4, 1 (2014). 10.1038/srep05764.[35] LIKAS, A., VLASSIS, N., AND VERBEEK, J. J. The global k-means clustering algorithm. Pattern recognition 36, 2 (2003), 451-461.[36] LIN, P., TROUP, M., AND HO, J. W. Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data. Genome biology 18, 1 (2017), 1-11.[37] LOPEZ, R., REGIER, J., COLE, M. B., JORDAN, M. I., AND YOSEF, N. Deep generative modeling for single-cell transcriptomics. Nature methods 15, 12 (2018), 1053-1058.[38] MACOSKO, E. Z., BASU, A., SATIJA, R., NEMESH, J., SHEKHAR, K., GOLDMAN, M., TIROSH, I., BIALAS, A. R., KAMITAKI, N., MARTERSTECK, E. M., ET AL. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 5 (2015), 1202-1214.[39] MACPARLAND, S. A., LIU, J. C., MA, X.-Z., INNES, B. T., BARTCZAK, A. M., GAGE, B. K., MANUEL, J., KHUU, N., ECHEVERRI, J., LINARES, I., ET AL. Single cell rna sequencing of human liver reveals distinct intrahepatic macrophage populations. Nature communications 9, 1 (2018), 1-21.[40] MCINNES, L., HEALY, J., AND MELVILLE, J. Umap: Uniform manifold approximation and projection for dimension reduction, 2018. 10.48550/ARXIV.1802.03426.[41] NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltzmann machines. In Icml (2010).[42] PACKER, J., AND TRAPNELL, C. Single-cell multi-omics: an engine for new quantitative models of gene regulation. Trends in Genetics 34, 9 (2018), 653-665.[43] PALASCA, O., SANTOS, A., STOLTE, C., GORODKIN, J., AND JENSEN, L. J. Tissues 2.0: an integrative web resource on mammalian tissue expression. Database 2018 (2018).[44] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differentiation in pytorch.[45] PENG, L., TIAN, X., TIAN, G., XU, J., HUANG, X., WENG, Y., YANG, J., AND ZHOU, L. Single-cell rna-seq clustering: datasets, models, and algorithms. RNA biology 17, 6 (2020), 765-783.[46] RAND, W. M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66, 336 (1971), 846-850.[47] REDDI, S. J., KALE, S., AND KUMAR, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019).[48] SALIBA, A.-E., WESTERMANN, A. J., GORSKI, S. A., AND VOGEL, J. Single-cell rnaseq: Advances and future challenges. Nucleic Acids Research 42, 14 (2014), 8845-8860. 10.1093/nar/gku555.[49] SASAGAWA, Y., DANNO, H., TAKADA, H., EBISAWA, M., TANAKA, K., HAYASHI, T., KURISAKI, A., AND NIKAIDO, I. Quartz-seq2: a high-throughput single-cell rnasequencing method that effectively uses limited sequence reads. Genome biology 19, 1 (2018), 1-24.[50] SATIJA, R., FARRELL, J. A., GENNERT, D., SCHIER, A. F., AND REGEV, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 5 (2015), 495-502.[51] SHEKHAR, K., LAPAN, S. W., WHITNEY, I. E., TRAN, N. M., MACOSKO, E. Z., KOWALCZYK, M., ADICONIS, X., LEVIN, J. Z., NEMESH, J., GOLDMAN, M., ET AL. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 5 (2016), 1308-1323.[52] STREHL, A., AND GHOSH, J. Cluster ensembles¿a knowledge reuse framework for combining multiple partitions. Journal of machine learning research 3, Dec (2002), 583-617.[53] STUART, T., AND SATIJA, R. Integrative single-cell analysis. Nature reviews genetics 20, 5 (2019), 257-272.[54] TIAN, L., DONG, X., FREYTAG, S., LÊ CAO, K.-A., SU, S., JALALABADI, A., AMANNZALCENSTEIN, D., WEBER, T. S., SEIDI, A., JABBARI, J. S., ET AL. Benchmarking single cell rna-sequencing analysis pipelines using mixture control experiments. Nature methods 16, 6 (2019), 479-487.[55] TIAN, T., WAN, J., SONG, Q., AND WEI, Z. Clustering single-cell rna-seq data with a model-based deep learning approach. Nature Machine Intelligence 1, 4 (2019), 191-198.[56] TIAN, T., ZHANG, J., LIN, X., WEI, Z., AND HAKONARSON, H. Model-based deep embedding for constrained clustering analysis of single cell rna-seq data. Nature communications 12, 1 (2021), 1-12.[57] VAN DER MAATEN, L. Learning a parametric embedding by preserving local structure. In Artificial intelligence and statistics (2009), PMLR, pp. 384-391.[58] WOLD, S., ESBENSEN, K., AND GELADI, P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2, 1 (1987), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9. Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.[59] WOLF, F. A., ANGERER, P., AND THEIS, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1 (2018), 1-5.[60] XIE, J., GIRSHICK, R., AND FARHADI, A. Unsupervised deep embedding for clustering analysis. In International conference on machine learning (2016), PMLR, pp. 478-487.[61] XU, C., AND SU, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 12 (2015), 1974-1980.[62] XU, Y., ZHANG, Z., YOU, L., LIU, J., FAN, Z., AND ZHOU, X. scIGANs: single-cell RNAseq imputation using generative adversarial networks. Nucleic Acids Research 48, 15 (06 2020), e85-e85. 10.1093/nar/gkaa506.[63] YAU, C., ET AL. pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC bioinformatics 17, 1 (2016), 1-11.[64] YOUNG, M. D., MITCHELL, T. J., VIEIRA BRAGA, F. A., TRAN, M. G., STEWART, B. J., FERDINAND, J. R., COLLORD, G., BOTTING, R. A., POPESCU, D.-M., LOUDON, K. W., ET AL. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. science 361, 6402 (2018), 594-599.[65] ZHANG, J. M., FAN, J., FAN, H. C., ROSENFELD, D., AND TSE, D. N. An interpretable framework for clustering single-cell rna-seq datasets. BMC bioinformatics 19, 1 (2018), 1-12.[66] ZHANG, Y., ZENG, F., HAN, X., WENG, J., AND GAO, Y. Lineage tracing: Technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Research amp; Therapy 11, 1 (2020). 10.1186/s13287-020-01941-y.[67] ZHENG, G. X., TERRY, J. M., BELGRADER, P., RYVKIN, P., BENT, Z. W., WILSON, R., ZIRALDO, S. B., WHEELER, T. D., MCDERMOTT, G. P., ZHU, J., ET AL. Massively parallel digital transcriptional profiling of single cells. Nature communications 8, 1 (2017), 1-12.201713023Publication07e4ae59-26ee-4988-9701-129fa965d270virtual::4014-107e4ae59-26ee-4988-9701-129fa965d270virtual::4014-1ORIGINALInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdfInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdfTrabajo de gradoapplication/pdf894661https://repositorio.uniandes.edu.co/bitstreams/7fbb5df2-26ea-4123-94ae-6a35565c1ae5/downloadc95c3aab35d2424da3a66d797318cb76MD53formatoTesisCristhianForigua_firmado[14058].pdfformatoTesisCristhianForigua_firmado[14058].pdfHIDEapplication/pdf112820https://repositorio.uniandes.edu.co/bitstreams/75fc39b6-5536-4bb3-bee2-cdbe3a67ea72/download5911093d9908f874080a6f7be2e8e80cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/e73d668e-4079-44de-9bdd-3516dc821d8b/download5aa5c691a1ffe97abd12c2966efcb8d6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/f492adff-b124-425f-a0a1-56f4ecae7da8/download84a900c9dd4b2a10095a94649e1ce116MD52THUMBNAILInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdf.jpgInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdf.jpgIM Thumbnailimage/jpeg17654https://repositorio.uniandes.edu.co/bitstreams/f561cfdc-84c6-480a-a86e-fd14cd68d1dc/download3ce78d5daa42fa3eb0e957803eca7a58MD57formatoTesisCristhianForigua_firmado[14058].pdf.jpgformatoTesisCristhianForigua_firmado[14058].pdf.jpgIM Thumbnailimage/jpeg15997https://repositorio.uniandes.edu.co/bitstreams/9faa4868-7340-4fd3-b17c-e0575544b720/download60b94ebdda1bfed9c2e1ffe7f54425c6MD59TEXTInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdf.txtInterpretable Deep Embeddings for Single-cell RNA-seq Clustering Analysis via Gene Attention.pdf.txtExtracted texttext/plain62209https://repositorio.uniandes.edu.co/bitstreams/a7d30be3-eb3d-471e-91ae-6994f028db32/download60a2d80be8e124bedbd9a254ac04cd8cMD56formatoTesisCristhianForigua_firmado[14058].pdf.txtformatoTesisCristhianForigua_firmado[14058].pdf.txtExtracted texttext/plain1385https://repositorio.uniandes.edu.co/bitstreams/0ba8d7da-9a2d-4ab7-83e5-2d11a5ccc385/download7234e62417ba177187fe9833b4f0bd50MD581992/63770oai:repositorio.uniandes.edu.co:1992/637702024-03-13 12:34:41.731http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==