Data-driven design of a reference governor using deep reinforcement learning

Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the des...

Full description

Autores:
Arroyo Bernal, María Angélica
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/43959
Acceso en línea:
http://hdl.handle.net/1992/43959
Palabra clave:
Controladores programables - Investigaciones
Aprendizaje automático (Inteligencia artificial) - Investigaciones
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_3fe3209d6bdaa45a30e72748ffc5df8a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/43959
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Data-driven design of a reference governor using deep reinforcement learning
title Data-driven design of a reference governor using deep reinforcement learning
spellingShingle Data-driven design of a reference governor using deep reinforcement learning
Controladores programables - Investigaciones
Aprendizaje automático (Inteligencia artificial) - Investigaciones
Ingeniería
title_short Data-driven design of a reference governor using deep reinforcement learning
title_full Data-driven design of a reference governor using deep reinforcement learning
title_fullStr Data-driven design of a reference governor using deep reinforcement learning
title_full_unstemmed Data-driven design of a reference governor using deep reinforcement learning
title_sort Data-driven design of a reference governor using deep reinforcement learning
dc.creator.fl_str_mv Arroyo Bernal, María Angélica
dc.contributor.advisor.none.fl_str_mv Giraldo Trujillo, Luis Felipe
dc.contributor.author.none.fl_str_mv Arroyo Bernal, María Angélica
dc.contributor.jury.none.fl_str_mv Jiménez Vargas, José Fernando
Granada Torres, Jhon James
dc.subject.armarc.es_CO.fl_str_mv Controladores programables - Investigaciones
Aprendizaje automático (Inteligencia artificial) - Investigaciones
topic Controladores programables - Investigaciones
Aprendizaje automático (Inteligencia artificial) - Investigaciones
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the desired performance. In situations where it is not possible to redesign the closed-loop system, it is usual to incorporate a reference governor that instructs the system to follow a modified reference path such that the resultant path is close to the ideal one. Current strategies to design the reference governor need to know a model of the system, which can be an unfeasible task. In this letter, we propose a framework based on deep reinforcement learning that can learn a policy to generate a modified reference that improves the system's performance in a non-invasive and model-free fashion. To illustrate the effectiveness of our approach, we present two challenging cases: a flight control with a pilot model that includes human reaction delays, and a mean-field control problem for a massive number of space-heating device. The proposed strategy successfully designs the reference governor that works even in situations that were not seen during the learning process.
publishDate 2019
dc.date.issued.es_CO.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-09-03T14:18:55Z
dc.date.available.none.fl_str_mv 2020-09-03T14:18:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/43959
dc.identifier.pdf.none.fl_str_mv u830493.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/43959
identifier_str_mv u830493.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 6 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Ingeniería Electrónica y de Computadores
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/484a0e20-8a60-4bc7-aec5-5cb5e768fdc4/download
https://repositorio.uniandes.edu.co/bitstreams/7fd2d0ec-aea4-4b93-8e64-4a88088f1fc9/download
https://repositorio.uniandes.edu.co/bitstreams/4fe93912-56b8-439f-ae10-90751da3f730/download
bitstream.checksum.fl_str_mv db87d84a1cceb35663c23c2cc97048fa
3e99ea1cb7d74307ef38ccedafedce0b
716504e33032ec63d39584fd692d05c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133957349670912
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Trujillo, Luis Felipe38235f6b-3734-4646-9b39-867f41953660400Arroyo Bernal, María Angélicaacf1d87f-4aee-4af3-a9ff-5543dab2ecde500Jiménez Vargas, José FernandoGranada Torres, Jhon James2020-09-03T14:18:55Z2020-09-03T14:18:55Z2019http://hdl.handle.net/1992/43959u830493.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the desired performance. In situations where it is not possible to redesign the closed-loop system, it is usual to incorporate a reference governor that instructs the system to follow a modified reference path such that the resultant path is close to the ideal one. Current strategies to design the reference governor need to know a model of the system, which can be an unfeasible task. In this letter, we propose a framework based on deep reinforcement learning that can learn a policy to generate a modified reference that improves the system's performance in a non-invasive and model-free fashion. To illustrate the effectiveness of our approach, we present two challenging cases: a flight control with a pilot model that includes human reaction delays, and a mean-field control problem for a massive number of space-heating device. The proposed strategy successfully designs the reference governor that works even in situations that were not seen during the learning process."Los sistemas de seguimiento de referencia involucran una planta estabilizada por un controlador local y un centro de comando que indica el punto de referencia que la planta debe seguir. Por lo general, estos sistemas están sujetos a limitaciones, como controladores mal diseñados que no les permiten lograr el rendimiento deseado. En situaciones en las que no es posible rediseñar el sistema de circuito cerrado, es habitual incorporar un gobernador de referencia que indique al sistema que siga una ruta de referencia modificada de modo que la ruta resultante sea cercana a la ideal. Las estrategias actuales para diseñar el gobernador de referencia necesitan conocer un modelo del sistema, que puede ser una tarea inviable. En este documento, proponemos un marco basado en el aprendizaje de refuerzo que puede aprender una política para generar una referencia modificada que mejore el rendimiento del sistema de una manera no invasiva y sin contar con el modelo del sistema. Para ilustrar la efectividad de nuestro enfoque, presentamos dos casos de estudio desafiantes: un control de vuelo con un modelo de un piloto que incluye retrasos en la reacción humana y un problema de control de campo medio para una gran cantidad de dispositivos de calentamiento. El gobernador de referencia diseñado funciona incluso en situaciones que no se vieron durante el proceso de aprendizaje."--Tomado del Formato de Documento de Grado.Magíster en Ingeniería Electrónica y de ComputadoresMaestría6 hojasapplication/pdfengUniandesMaestría en Ingeniería Electrónica y de ComputadoresFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y Electrónicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaData-driven design of a reference governor using deep reinforcement learningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMControladores programables - InvestigacionesAprendizaje automático (Inteligencia artificial) - InvestigacionesIngenieríaPublicationTHUMBNAILu830493.pdf.jpgu830493.pdf.jpgIM Thumbnailimage/jpeg28863https://repositorio.uniandes.edu.co/bitstreams/484a0e20-8a60-4bc7-aec5-5cb5e768fdc4/downloaddb87d84a1cceb35663c23c2cc97048faMD55ORIGINALu830493.pdfapplication/pdf1330148https://repositorio.uniandes.edu.co/bitstreams/7fd2d0ec-aea4-4b93-8e64-4a88088f1fc9/download3e99ea1cb7d74307ef38ccedafedce0bMD51TEXTu830493.pdf.txtu830493.pdf.txtExtracted texttext/plain29664https://repositorio.uniandes.edu.co/bitstreams/4fe93912-56b8-439f-ae10-90751da3f730/download716504e33032ec63d39584fd692d05c0MD541992/43959oai:repositorio.uniandes.edu.co:1992/439592023-10-10 17:48:17.103https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co