Data-driven design of a reference governor using deep reinforcement learning
Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the des...
- Autores:
-
Arroyo Bernal, María Angélica
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/43959
- Acceso en línea:
- http://hdl.handle.net/1992/43959
- Palabra clave:
- Controladores programables - Investigaciones
Aprendizaje automático (Inteligencia artificial) - Investigaciones
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_3fe3209d6bdaa45a30e72748ffc5df8a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/43959 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Data-driven design of a reference governor using deep reinforcement learning |
title |
Data-driven design of a reference governor using deep reinforcement learning |
spellingShingle |
Data-driven design of a reference governor using deep reinforcement learning Controladores programables - Investigaciones Aprendizaje automático (Inteligencia artificial) - Investigaciones Ingeniería |
title_short |
Data-driven design of a reference governor using deep reinforcement learning |
title_full |
Data-driven design of a reference governor using deep reinforcement learning |
title_fullStr |
Data-driven design of a reference governor using deep reinforcement learning |
title_full_unstemmed |
Data-driven design of a reference governor using deep reinforcement learning |
title_sort |
Data-driven design of a reference governor using deep reinforcement learning |
dc.creator.fl_str_mv |
Arroyo Bernal, María Angélica |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Trujillo, Luis Felipe |
dc.contributor.author.none.fl_str_mv |
Arroyo Bernal, María Angélica |
dc.contributor.jury.none.fl_str_mv |
Jiménez Vargas, José Fernando Granada Torres, Jhon James |
dc.subject.armarc.es_CO.fl_str_mv |
Controladores programables - Investigaciones Aprendizaje automático (Inteligencia artificial) - Investigaciones |
topic |
Controladores programables - Investigaciones Aprendizaje automático (Inteligencia artificial) - Investigaciones Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the desired performance. In situations where it is not possible to redesign the closed-loop system, it is usual to incorporate a reference governor that instructs the system to follow a modified reference path such that the resultant path is close to the ideal one. Current strategies to design the reference governor need to know a model of the system, which can be an unfeasible task. In this letter, we propose a framework based on deep reinforcement learning that can learn a policy to generate a modified reference that improves the system's performance in a non-invasive and model-free fashion. To illustrate the effectiveness of our approach, we present two challenging cases: a flight control with a pilot model that includes human reaction delays, and a mean-field control problem for a massive number of space-heating device. The proposed strategy successfully designs the reference governor that works even in situations that were not seen during the learning process. |
publishDate |
2019 |
dc.date.issued.es_CO.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T14:18:55Z |
dc.date.available.none.fl_str_mv |
2020-09-03T14:18:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/43959 |
dc.identifier.pdf.none.fl_str_mv |
u830493.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/43959 |
identifier_str_mv |
u830493.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
6 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Ingeniería Electrónica y de Computadores |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/484a0e20-8a60-4bc7-aec5-5cb5e768fdc4/download https://repositorio.uniandes.edu.co/bitstreams/7fd2d0ec-aea4-4b93-8e64-4a88088f1fc9/download https://repositorio.uniandes.edu.co/bitstreams/4fe93912-56b8-439f-ae10-90751da3f730/download |
bitstream.checksum.fl_str_mv |
db87d84a1cceb35663c23c2cc97048fa 3e99ea1cb7d74307ef38ccedafedce0b 716504e33032ec63d39584fd692d05c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133957349670912 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Trujillo, Luis Felipe38235f6b-3734-4646-9b39-867f41953660400Arroyo Bernal, María Angélicaacf1d87f-4aee-4af3-a9ff-5543dab2ecde500Jiménez Vargas, José FernandoGranada Torres, Jhon James2020-09-03T14:18:55Z2020-09-03T14:18:55Z2019http://hdl.handle.net/1992/43959u830493.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Reference tracking systems involve a plant that is stabilized by a local controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subjected to limitations such as poorly designed controllers that do not allow them to achieve the desired performance. In situations where it is not possible to redesign the closed-loop system, it is usual to incorporate a reference governor that instructs the system to follow a modified reference path such that the resultant path is close to the ideal one. Current strategies to design the reference governor need to know a model of the system, which can be an unfeasible task. In this letter, we propose a framework based on deep reinforcement learning that can learn a policy to generate a modified reference that improves the system's performance in a non-invasive and model-free fashion. To illustrate the effectiveness of our approach, we present two challenging cases: a flight control with a pilot model that includes human reaction delays, and a mean-field control problem for a massive number of space-heating device. The proposed strategy successfully designs the reference governor that works even in situations that were not seen during the learning process."Los sistemas de seguimiento de referencia involucran una planta estabilizada por un controlador local y un centro de comando que indica el punto de referencia que la planta debe seguir. Por lo general, estos sistemas están sujetos a limitaciones, como controladores mal diseñados que no les permiten lograr el rendimiento deseado. En situaciones en las que no es posible rediseñar el sistema de circuito cerrado, es habitual incorporar un gobernador de referencia que indique al sistema que siga una ruta de referencia modificada de modo que la ruta resultante sea cercana a la ideal. Las estrategias actuales para diseñar el gobernador de referencia necesitan conocer un modelo del sistema, que puede ser una tarea inviable. En este documento, proponemos un marco basado en el aprendizaje de refuerzo que puede aprender una política para generar una referencia modificada que mejore el rendimiento del sistema de una manera no invasiva y sin contar con el modelo del sistema. Para ilustrar la efectividad de nuestro enfoque, presentamos dos casos de estudio desafiantes: un control de vuelo con un modelo de un piloto que incluye retrasos en la reacción humana y un problema de control de campo medio para una gran cantidad de dispositivos de calentamiento. El gobernador de referencia diseñado funciona incluso en situaciones que no se vieron durante el proceso de aprendizaje."--Tomado del Formato de Documento de Grado.Magíster en Ingeniería Electrónica y de ComputadoresMaestría6 hojasapplication/pdfengUniandesMaestría en Ingeniería Electrónica y de ComputadoresFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y Electrónicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaData-driven design of a reference governor using deep reinforcement learningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMControladores programables - InvestigacionesAprendizaje automático (Inteligencia artificial) - InvestigacionesIngenieríaPublicationTHUMBNAILu830493.pdf.jpgu830493.pdf.jpgIM Thumbnailimage/jpeg28863https://repositorio.uniandes.edu.co/bitstreams/484a0e20-8a60-4bc7-aec5-5cb5e768fdc4/downloaddb87d84a1cceb35663c23c2cc97048faMD55ORIGINALu830493.pdfapplication/pdf1330148https://repositorio.uniandes.edu.co/bitstreams/7fd2d0ec-aea4-4b93-8e64-4a88088f1fc9/download3e99ea1cb7d74307ef38ccedafedce0bMD51TEXTu830493.pdf.txtu830493.pdf.txtExtracted texttext/plain29664https://repositorio.uniandes.edu.co/bitstreams/4fe93912-56b8-439f-ae10-90751da3f730/download716504e33032ec63d39584fd692d05c0MD541992/43959oai:repositorio.uniandes.edu.co:1992/439592023-10-10 17:48:17.103https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |