Variable stars' light curve detection and classification using supervised machine learning
We present two applications of supervised machine learning aimed at addressing the light curve classification problem in stellar variability. Our main goal is to streamline the analysis of light curves obtained from large-scale photometric and multi-epoch astronomic surveys. In the first application...
- Autores:
-
Elizabethson, Astaroth
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73980
- Acceso en línea:
- https://hdl.handle.net/1992/73980
- Palabra clave:
- Astronomy
Machine Learning
KNN
CART
RF
SVM
RR Lyrae stars
Cepheid stars
T Tauri stars
VVV Survey
Vista Variable Stars in the Via Lactea
TESS
Transiting Exoplanet Survey Satellite
Física
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_3f030529e38878f38bc5743a3804e8f4 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73980 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Variable stars' light curve detection and classification using supervised machine learning |
dc.title.alternative.eng.fl_str_mv |
Variable stars light curve detection and classification using supervised machine learning |
title |
Variable stars' light curve detection and classification using supervised machine learning |
spellingShingle |
Variable stars' light curve detection and classification using supervised machine learning Astronomy Machine Learning KNN CART RF SVM RR Lyrae stars Cepheid stars T Tauri stars VVV Survey Vista Variable Stars in the Via Lactea TESS Transiting Exoplanet Survey Satellite Física |
title_short |
Variable stars' light curve detection and classification using supervised machine learning |
title_full |
Variable stars' light curve detection and classification using supervised machine learning |
title_fullStr |
Variable stars' light curve detection and classification using supervised machine learning |
title_full_unstemmed |
Variable stars' light curve detection and classification using supervised machine learning |
title_sort |
Variable stars' light curve detection and classification using supervised machine learning |
dc.creator.fl_str_mv |
Elizabethson, Astaroth |
dc.contributor.advisor.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.author.none.fl_str_mv |
Elizabethson, Astaroth |
dc.contributor.jury.none.fl_str_mv |
Alonso García, Javier Giraldo Trujillo, Luis Felipe |
dc.subject.keyword.eng.fl_str_mv |
Astronomy Machine Learning KNN CART RF SVM RR Lyrae stars Cepheid stars T Tauri stars VVV Survey Vista Variable Stars in the Via Lactea TESS Transiting Exoplanet Survey Satellite |
topic |
Astronomy Machine Learning KNN CART RF SVM RR Lyrae stars Cepheid stars T Tauri stars VVV Survey Vista Variable Stars in the Via Lactea TESS Transiting Exoplanet Survey Satellite Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
We present two applications of supervised machine learning aimed at addressing the light curve classification problem in stellar variability. Our main goal is to streamline the analysis of light curves obtained from large-scale photometric and multi-epoch astronomic surveys. In the first application, we conduct a variability and morphological classification study on TESS light curves for T Tauri star candidates in several regions, including Orion complex forming region, IC 348, gamma Velorum, Upper Scorpius, Corona Australis, and Perseus OB2. We introduce 11 morphological classes that link variations in brightness with potential physical or geometric phenomena in T Tauri stars. To automate the classification among these classes, we develop a supervised machine learning algorithm. Our algorithm optimizes and compares the true positive rate (recall) among k-nearest neighbors, classification trees, random forests, and support vector machines. We achieve this by characterizing light curves with features related to time, periodicity, and magnitude distribution. We train binary and multiclass classifiers and interpret the results in a way that allows our final algorithm to assign single or mixed classes. In the testing sample, the algorithm assigns mixed classes to 27% of the stars, with some stars receiving up to five simultaneous class assignments. We present a catalog of 3672 T Tauri star candidates, along with their possible period estimations, predicted morphological classes, and visually reviewed assignments. The cross validation estimated performance of the final classifiers is reported. Binary classifiers perform better than multiclass classifiers for classes with limited representation in the training sample. Support vector machines and random forest classifiers achieve better recalls. Furthermore, we provide another performance estimation of the final classifiers using the revised classes of our testing sample, indicating that this performance excels in single-classed stars, which account for approximately 75% of the testing sample. In the second application, we focus on the b278 and b279 fields of the VVV survey, conducted in the Ks infrared band. We analyze time-series data from over 60 epochs in each field to assess the performance of binary and multiclass classifiers. Our primary objective is to have these classifiers identify stellar variability and subsequently differentiate between various classes of variability, especially classical Cepheids, RR Lyrae, long-period variables, and Mira variables. Notably, the features used in this analysis are independent of a periodicity search process. This approach allows for the inclusion of variable stars that do not exhibit periodic changes in magnitude and saves the computational work of a priori period estimations over the whole initial data. We create the training dataset by extracting time-series data from the public catalog of the VVV template project. Additionally, we include time-series data from variable stars observed in the 2MASS-GC02 and Terzan10 globular clusters, and generate synthetic non-variable light curves that emulate the cadence and magnitude uncertainties of the VVV data. We conduct a comparative analysis of the F1 score of these classifiers. In the end, this research produces a catalogue of candidates for variable stars in the Galactic Bulge direction, including 266 candidates whose phased light curves are consistent with the morphology expected for their classes. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-15T15:40:49Z |
dc.date.available.none.fl_str_mv |
2024-02-15T15:40:49Z |
dc.date.issued.none.fl_str_mv |
2024-01-31 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73980 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/73980 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73980 |
identifier_str_mv |
10.57784/1992/73980 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
147 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/33e8ab7f-ed90-4995-850c-cb835e4b8c6a/download https://repositorio.uniandes.edu.co/bitstreams/0ed5e488-7277-4cdc-8feb-f7ad06498169/download https://repositorio.uniandes.edu.co/bitstreams/9b589775-1d91-4b75-8755-268c94c55623/download https://repositorio.uniandes.edu.co/bitstreams/9b5447fd-5b3d-486b-8ee0-2a1ad3adbe56/download https://repositorio.uniandes.edu.co/bitstreams/3c34b2b9-ac07-4f12-8712-a8313d829eba/download https://repositorio.uniandes.edu.co/bitstreams/fa530d9c-a7b3-4661-9431-663092495b76/download https://repositorio.uniandes.edu.co/bitstreams/ca2b3bd6-ee03-4a14-8b1d-4352f0cab1f9/download |
bitstream.checksum.fl_str_mv |
ae9e573a68e7f92501b6913cc846c39f 8792a2d5ae60946e24d5cadb46c8f8fb 022ee9edf7621e09e4f57af9db64518c a54b356d4e516ef66dec54c1987ba092 7eb07ec9fcb84efdb46baa04a49bc12e bc99b66b6f87c4f6fae1fddb0a4a3f5b 866c9e00f2872aa820810bf068db7187 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134033720606720 |
spelling |
García Varela, José Alejandrovirtual::424-1Elizabethson, AstarothAlonso García, JavierGiraldo Trujillo, Luis Felipe2024-02-15T15:40:49Z2024-02-15T15:40:49Z2024-01-31https://hdl.handle.net/1992/7398010.57784/1992/73980instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/We present two applications of supervised machine learning aimed at addressing the light curve classification problem in stellar variability. Our main goal is to streamline the analysis of light curves obtained from large-scale photometric and multi-epoch astronomic surveys. In the first application, we conduct a variability and morphological classification study on TESS light curves for T Tauri star candidates in several regions, including Orion complex forming region, IC 348, gamma Velorum, Upper Scorpius, Corona Australis, and Perseus OB2. We introduce 11 morphological classes that link variations in brightness with potential physical or geometric phenomena in T Tauri stars. To automate the classification among these classes, we develop a supervised machine learning algorithm. Our algorithm optimizes and compares the true positive rate (recall) among k-nearest neighbors, classification trees, random forests, and support vector machines. We achieve this by characterizing light curves with features related to time, periodicity, and magnitude distribution. We train binary and multiclass classifiers and interpret the results in a way that allows our final algorithm to assign single or mixed classes. In the testing sample, the algorithm assigns mixed classes to 27% of the stars, with some stars receiving up to five simultaneous class assignments. We present a catalog of 3672 T Tauri star candidates, along with their possible period estimations, predicted morphological classes, and visually reviewed assignments. The cross validation estimated performance of the final classifiers is reported. Binary classifiers perform better than multiclass classifiers for classes with limited representation in the training sample. Support vector machines and random forest classifiers achieve better recalls. Furthermore, we provide another performance estimation of the final classifiers using the revised classes of our testing sample, indicating that this performance excels in single-classed stars, which account for approximately 75% of the testing sample. In the second application, we focus on the b278 and b279 fields of the VVV survey, conducted in the Ks infrared band. We analyze time-series data from over 60 epochs in each field to assess the performance of binary and multiclass classifiers. Our primary objective is to have these classifiers identify stellar variability and subsequently differentiate between various classes of variability, especially classical Cepheids, RR Lyrae, long-period variables, and Mira variables. Notably, the features used in this analysis are independent of a periodicity search process. This approach allows for the inclusion of variable stars that do not exhibit periodic changes in magnitude and saves the computational work of a priori period estimations over the whole initial data. We create the training dataset by extracting time-series data from the public catalog of the VVV template project. Additionally, we include time-series data from variable stars observed in the 2MASS-GC02 and Terzan10 globular clusters, and generate synthetic non-variable light curves that emulate the cadence and magnitude uncertainties of the VVV data. We conduct a comparative analysis of the F1 score of these classifiers. In the end, this research produces a catalogue of candidates for variable stars in the Galactic Bulge direction, including 266 candidates whose phased light curves are consistent with the morphology expected for their classes.Doctor en Ciencias - FísicaDoctorado147 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de Físicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Variable stars' light curve detection and classification using supervised machine learningVariable stars light curve detection and classification using supervised machine learningTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDAstronomyMachine LearningKNNCARTRFSVMRR Lyrae starsCepheid starsT Tauri starsVVV SurveyVista Variable Stars in the Via LacteaTESSTransiting Exoplanet Survey SatelliteFísica200726594Publication2e03708c-f6d7-4f0f-a46b-71da91053f0788a1271b-7c5b-4cba-a02a-87878aba01e4virtual::424-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::424-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::424-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/33e8ab7f-ed90-4995-850c-cb835e4b8c6a/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALVariable stars' light curve detection and classification.pdfVariable stars' light curve detection and classification.pdfapplication/pdf26551555https://repositorio.uniandes.edu.co/bitstreams/0ed5e488-7277-4cdc-8feb-f7ad06498169/download8792a2d5ae60946e24d5cadb46c8f8fbMD52autorizacionTesisFirmada.pdfautorizacionTesisFirmada.pdfHIDEapplication/pdf300281https://repositorio.uniandes.edu.co/bitstreams/9b589775-1d91-4b75-8755-268c94c55623/download022ee9edf7621e09e4f57af9db64518cMD53TEXTVariable stars' light curve detection and classification.pdf.txtVariable stars' light curve detection and classification.pdf.txtExtracted texttext/plain101480https://repositorio.uniandes.edu.co/bitstreams/9b5447fd-5b3d-486b-8ee0-2a1ad3adbe56/downloada54b356d4e516ef66dec54c1987ba092MD54autorizacionTesisFirmada.pdf.txtautorizacionTesisFirmada.pdf.txtExtracted texttext/plain2015https://repositorio.uniandes.edu.co/bitstreams/3c34b2b9-ac07-4f12-8712-a8313d829eba/download7eb07ec9fcb84efdb46baa04a49bc12eMD56THUMBNAILVariable stars' light curve detection and classification.pdf.jpgVariable stars' light curve detection and classification.pdf.jpgGenerated Thumbnailimage/jpeg5622https://repositorio.uniandes.edu.co/bitstreams/fa530d9c-a7b3-4661-9431-663092495b76/downloadbc99b66b6f87c4f6fae1fddb0a4a3f5bMD55autorizacionTesisFirmada.pdf.jpgautorizacionTesisFirmada.pdf.jpgGenerated Thumbnailimage/jpeg11070https://repositorio.uniandes.edu.co/bitstreams/ca2b3bd6-ee03-4a14-8b1d-4352f0cab1f9/download866c9e00f2872aa820810bf068db7187MD571992/73980oai:repositorio.uniandes.edu.co:1992/739802024-08-26 15:25:46.542https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |