A polynomial approach for analysis and optimal control of switched nonlinear systems

"In this dissertation, we investigate how convex semialgebraic geometry and global polynomial optimization can be used to analyze and to design switched nonlinear systems. To deal with stability analysis of switched nonlinear systems it is shown that the representation of the original switched...

Full description

Autores:
Mojica Nava, Eduardo Alirio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2009
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/7760
Acceso en línea:
http://hdl.handle.net/1992/7760
Palabra clave:
Control automático - Investigaciones
Teoría del control no lineal - Investigaciones
Telecomunicaciones - Sistemas de conmutación - Investigaciones
Optimización matemática - Investigaciones
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:"In this dissertation, we investigate how convex semialgebraic geometry and global polynomial optimization can be used to analyze and to design switched nonlinear systems. To deal with stability analysis of switched nonlinear systems it is shown that the representation of the original switched problem into a continous polynomial system allows us to use the dissipation inequality for polynomial systems. With this method and from a theoretical point of view, we provide an alternative way to search for a common Lyapunov function for switched nonlinear systems. The main idea behind the proposed approach is to include in the system analysis the hidden constraints... "