A multivariate approach to dimension estimation on manifolds with triangle area U-statistics

For data on a manifold M ⊆ ℝᵐ and a point p ∈ M, this thesis introduces a multivariate estimator that leverages angle- and triangle area-based U-statistics (U₁, V₁, V₂) to assess the intrinsic dimension of M at p. By considering the variance of angles formed by pairs of nearby data points, and the m...

Full description

Autores:
Vargas Robayo, Bianca Michelle
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75813
Acceso en línea:
https://hdl.handle.net/1992/75813
Palabra clave:
Estadística
Manifold Learning
Matemáticas
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_3972b3a675cfd2a31a8203849eac486b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75813
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
title A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
spellingShingle A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
Estadística
Manifold Learning
Matemáticas
title_short A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
title_full A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
title_fullStr A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
title_full_unstemmed A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
title_sort A multivariate approach to dimension estimation on manifolds with triangle area U-statistics
dc.creator.fl_str_mv Vargas Robayo, Bianca Michelle
dc.contributor.advisor.none.fl_str_mv Quiroz Salazar, Adolfo José
dc.contributor.author.none.fl_str_mv Vargas Robayo, Bianca Michelle
dc.contributor.jury.none.fl_str_mv Hoegele, Michael Anton
dc.subject.keyword.spa.fl_str_mv Estadística
topic Estadística
Manifold Learning
Matemáticas
dc.subject.keyword.eng.fl_str_mv Manifold Learning
dc.subject.themes.spa.fl_str_mv Matemáticas
description For data on a manifold M ⊆ ℝᵐ and a point p ∈ M, this thesis introduces a multivariate estimator that leverages angle- and triangle area-based U-statistics (U₁, V₁, V₂) to assess the intrinsic dimension of M at p. By considering the variance of angles formed by pairs of nearby data points, and the mean and variance of triangle areas formed by triplets, the proposed methodology captures the manifold's local geometry. A multivariate approach using the Mahalanobis distance ensures robust dimension estimation by incorporating covariance structure. The estimator is evaluated through testing on both simulated manifolds and real-world datasets. Robust statistical tools, such as the Minimum Volume Ellipsoid (MVE), are employed to enhance reliability.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-30T12:53:28Z
dc.date.available.none.fl_str_mv 2025-01-30T12:53:28Z
dc.date.issued.none.fl_str_mv 2025-01-10
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75813
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75813
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv A. J. Quiroz M. Díaz and M. Velasco. “Local angles and dimension estimation from data on manifolds”. In: Journal of Multivariate Analysis 173 (2019), pp. 229–247. doi: 10.1016/j.jmva.2019.02.001. url: https://doi.org/10.1016/j.jmva.2019.02.001.
L. Tu. An Introduction to Manifolds. 2nd. New York: Springer, 2010. isbn: 9781441973993. doi: 10.1007/978-1-4419-7399-3.
M. Meila and H. Zhang. “Manifold Learning: What, How, and Why”. In: Annual Review of Statistics and Its Application 11 (2024), pp. 393–417. doi: 10.1146/annurev-statistics-040522-115238. url: https://doi.org/10.1146/annurev-statistics-040522-115238.
X. Wang and J. S. Marron. “A scale-based approach to finding effective dimensionality in manifold learning”. In: Electronic Journal of Statistics 2 (2008). 17 Mar 2008, pp. 127–148. issn: 1935-7524. doi: 10.1214/07-EJS137. arXiv: arXiv:0710.5349v2 [math.ST].
P. Grassberger and I. Procaccia. “Measuring the strangeness of strange attractors”. In: Physica D: Nonlinear Phenomena 9.1-2 (1983), pp. 189–208. doi: 10.1016/0167-2789(83)90298-1.
E. Levina and P. J. Bickel. “Maximum Likelihood Estimation of Intrinsic Dimension”. In: Advances in Neural Information Processing Systems 17 (2005), pp. 777–784.
A. J. Quiroz M. R. Brito and J. E. Yukich. “Intrinsic dimension identification via graph-theoretic methods”. In: Journal of Multivariate Analysis 116 (2013), pp. 263–277. doi: 10.1016/j.jmva.2012.10.005.
J. M. Lee. Introduction to Smooth Manifolds. 2nd. New York: Springer, 2013. isbn: 978-1-4419-9982-5. doi: 10.1007/978-1-4419-9982-5.
R. H. Randles and D. A. Wolfe. Introduction to the Theory of Nonparametric Statistics. New York: John Wiley & Sons, 1979. isbn: 9780471032707.
Robert J. Serfling. Approximation theorems of mathematical statistics. John Wiley & Sons, 1980.
P. Rousseeuw and M. Hubert. “High-Breakdown Estimators of Multivariate Location and Scatter”. In: Robustness and Complex Data Structures. Springer, 2013, pp. 49–66. doi: 10.1007/978-3-642-35494-6_4.
S. Van Aelst and P. Rousseeuw. “Minimum Volume Ellipsoid”. In: WIREs Computational Statistics 1 (2009), pp. 71–82.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 52 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/46a4a06d-081a-4c41-996d-bda00a12082f/download
https://repositorio.uniandes.edu.co/bitstreams/53caf196-deb3-4e52-999b-ff4e85a61d7f/download
https://repositorio.uniandes.edu.co/bitstreams/b6e9d172-e7ef-4835-bf59-1fd3498d556c/download
https://repositorio.uniandes.edu.co/bitstreams/54afb111-45ef-4fd1-802f-fa1bfb167269/download
https://repositorio.uniandes.edu.co/bitstreams/3cf86d23-6a65-4658-b484-16b07526a8a6/download
https://repositorio.uniandes.edu.co/bitstreams/5fd260ee-335c-4fdb-955f-b9c4fb826238/download
https://repositorio.uniandes.edu.co/bitstreams/a33a5586-b10c-44ae-9d68-3bc5b652c9ba/download
https://repositorio.uniandes.edu.co/bitstreams/359414a4-2162-4522-8853-8208c496752a/download
bitstream.checksum.fl_str_mv 044241c72beaf2601893cef0f7c4e0ce
27613704839308a025445bb7211f0aea
ae9e573a68e7f92501b6913cc846c39f
0175ea4a2d4caec4bbcc37e300941108
a9f341e4717b4bdc9caf7f81cd44ac2f
df0c6c183e526c616bbd6fe9c16792bd
955304d5b6a7ba1ae9c25318455a0361
23c5fe7866b539fbaf65b7c8e06cc2c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927714589704192
spelling Quiroz Salazar, Adolfo Josévirtual::22847-1Vargas Robayo, Bianca MichelleHoegele, Michael Anton2025-01-30T12:53:28Z2025-01-30T12:53:28Z2025-01-10https://hdl.handle.net/1992/75813instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/For data on a manifold M ⊆ ℝᵐ and a point p ∈ M, this thesis introduces a multivariate estimator that leverages angle- and triangle area-based U-statistics (U₁, V₁, V₂) to assess the intrinsic dimension of M at p. By considering the variance of angles formed by pairs of nearby data points, and the mean and variance of triangle areas formed by triplets, the proposed methodology captures the manifold's local geometry. A multivariate approach using the Mahalanobis distance ensures robust dimension estimation by incorporating covariance structure. The estimator is evaluated through testing on both simulated manifolds and real-world datasets. Robust statistical tools, such as the Minimum Volume Ellipsoid (MVE), are employed to enhance reliability.Pregrado52 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A multivariate approach to dimension estimation on manifolds with triangle area U-statisticsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEstadísticaManifold LearningMatemáticasA. J. Quiroz M. Díaz and M. Velasco. “Local angles and dimension estimation from data on manifolds”. In: Journal of Multivariate Analysis 173 (2019), pp. 229–247. doi: 10.1016/j.jmva.2019.02.001. url: https://doi.org/10.1016/j.jmva.2019.02.001.L. Tu. An Introduction to Manifolds. 2nd. New York: Springer, 2010. isbn: 9781441973993. doi: 10.1007/978-1-4419-7399-3.M. Meila and H. Zhang. “Manifold Learning: What, How, and Why”. In: Annual Review of Statistics and Its Application 11 (2024), pp. 393–417. doi: 10.1146/annurev-statistics-040522-115238. url: https://doi.org/10.1146/annurev-statistics-040522-115238.X. Wang and J. S. Marron. “A scale-based approach to finding effective dimensionality in manifold learning”. In: Electronic Journal of Statistics 2 (2008). 17 Mar 2008, pp. 127–148. issn: 1935-7524. doi: 10.1214/07-EJS137. arXiv: arXiv:0710.5349v2 [math.ST].P. Grassberger and I. Procaccia. “Measuring the strangeness of strange attractors”. In: Physica D: Nonlinear Phenomena 9.1-2 (1983), pp. 189–208. doi: 10.1016/0167-2789(83)90298-1.E. Levina and P. J. Bickel. “Maximum Likelihood Estimation of Intrinsic Dimension”. In: Advances in Neural Information Processing Systems 17 (2005), pp. 777–784.A. J. Quiroz M. R. Brito and J. E. Yukich. “Intrinsic dimension identification via graph-theoretic methods”. In: Journal of Multivariate Analysis 116 (2013), pp. 263–277. doi: 10.1016/j.jmva.2012.10.005.J. M. Lee. Introduction to Smooth Manifolds. 2nd. New York: Springer, 2013. isbn: 978-1-4419-9982-5. doi: 10.1007/978-1-4419-9982-5.R. H. Randles and D. A. Wolfe. Introduction to the Theory of Nonparametric Statistics. New York: John Wiley & Sons, 1979. isbn: 9780471032707.Robert J. Serfling. Approximation theorems of mathematical statistics. John Wiley & Sons, 1980.P. Rousseeuw and M. Hubert. “High-Breakdown Estimators of Multivariate Location and Scatter”. In: Robustness and Complex Data Structures. Springer, 2013, pp. 49–66. doi: 10.1007/978-3-642-35494-6_4.S. Van Aelst and P. Rousseeuw. “Minimum Volume Ellipsoid”. In: WIREs Computational Statistics 1 (2009), pp. 71–82.201914771Publicationhttps://scholar.google.es/citations?user=qwMDh-4AAAAJvirtual::22847-10000-0003-4033-3400virtual::22847-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001497101virtual::22847-11be19e5b-39c2-4d92-b44f-b9b4a48991cavirtual::22847-11be19e5b-39c2-4d92-b44f-b9b4a48991cavirtual::22847-1ORIGINALA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdfA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdfapplication/pdf520735https://repositorio.uniandes.edu.co/bitstreams/46a4a06d-081a-4c41-996d-bda00a12082f/download044241c72beaf2601893cef0f7c4e0ceMD52FORMATO CUMPLIMIENTO Michelle Vargas.pdfHIDEapplication/pdf248378https://repositorio.uniandes.edu.co/bitstreams/53caf196-deb3-4e52-999b-ff4e85a61d7f/download27613704839308a025445bb7211f0aeaMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b6e9d172-e7ef-4835-bf59-1fd3498d556c/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/54afb111-45ef-4fd1-802f-fa1bfb167269/download0175ea4a2d4caec4bbcc37e300941108MD54TEXTA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdf.txtA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdf.txtExtracted texttext/plain72302https://repositorio.uniandes.edu.co/bitstreams/3cf86d23-6a65-4658-b484-16b07526a8a6/downloada9f341e4717b4bdc9caf7f81cd44ac2fMD56FORMATO CUMPLIMIENTO Michelle Vargas.pdf.txtFORMATO CUMPLIMIENTO Michelle Vargas.pdf.txtExtracted texttext/plain17https://repositorio.uniandes.edu.co/bitstreams/5fd260ee-335c-4fdb-955f-b9c4fb826238/downloaddf0c6c183e526c616bbd6fe9c16792bdMD58THUMBNAILA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdf.jpgA multivariate approach to dimension estimation on manifolds with triangle area U -statistics.pdf.jpgGenerated Thumbnailimage/jpeg6672https://repositorio.uniandes.edu.co/bitstreams/a33a5586-b10c-44ae-9d68-3bc5b652c9ba/download955304d5b6a7ba1ae9c25318455a0361MD57FORMATO CUMPLIMIENTO Michelle Vargas.pdf.jpgFORMATO CUMPLIMIENTO Michelle Vargas.pdf.jpgGenerated Thumbnailimage/jpeg11102https://repositorio.uniandes.edu.co/bitstreams/359414a4-2162-4522-8853-8208c496752a/download23c5fe7866b539fbaf65b7c8e06cc2c1MD591992/75813oai:repositorio.uniandes.edu.co:1992/758132025-03-05 09:40:34.789http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K