The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry

In this work, we use this moment map to relate solutions to certain differential equations to (i) diffeomorphisms of compact Riemann surfaces, (ii) additional Kähler metrics on a given compact Kähler manifold, and (iii) symplectic forms on 4-manifolds.

Autores:
Dorado Toro, Daniel Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69072
Acceso en línea:
http://hdl.handle.net/1992/69072
Palabra clave:
Differential geometry
Moment map
Symplectic geometry
Manifolds
Kähler manifolds
Infinite-dimensional manifolds
Diffeomorphism groups
Matemáticas
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_3763c1e817abf5797b8240c3c7e5cfbb
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69072
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
title The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
spellingShingle The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
Differential geometry
Moment map
Symplectic geometry
Manifolds
Kähler manifolds
Infinite-dimensional manifolds
Diffeomorphism groups
Matemáticas
title_short The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
title_full The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
title_fullStr The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
title_full_unstemmed The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
title_sort The moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
dc.creator.fl_str_mv Dorado Toro, Daniel Fernando
dc.contributor.advisor.none.fl_str_mv Cardona Guio, Alexander
dc.contributor.author.none.fl_str_mv Dorado Toro, Daniel Fernando
dc.contributor.jury.none.fl_str_mv Cortissoz Iriarte, Jean Carlos
dc.subject.keyword.none.fl_str_mv Differential geometry
Moment map
Symplectic geometry
Manifolds
Kähler manifolds
Infinite-dimensional manifolds
Diffeomorphism groups
topic Differential geometry
Moment map
Symplectic geometry
Manifolds
Kähler manifolds
Infinite-dimensional manifolds
Diffeomorphism groups
Matemáticas
dc.subject.themes.es_CO.fl_str_mv Matemáticas
description In this work, we use this moment map to relate solutions to certain differential equations to (i) diffeomorphisms of compact Riemann surfaces, (ii) additional Kähler metrics on a given compact Kähler manifold, and (iii) symplectic forms on 4-manifolds.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-02T13:28:27Z
dc.date.available.none.fl_str_mv 2023-08-02T13:28:27Z
dc.date.issued.none.fl_str_mv 2023-06-01
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69072
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69072
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv F. Klein, «Vergleichende Betrachtungen über neuere geometrische Forschungen», de, Mathematische Annalen 43, 63-100 (1893).
K. Mann, «The Structure of Homeomorphism and Diffeomorphism Groups», en, Notices of the Amer- ican Mathematical Society 68, 1 (2021).
S. K. Donaldson, «Moment maps and diffeomorphisms», Surveys in differential geometry 3, 107-127 (2002).
S. K. Donaldson, «Moment maps in differential geometry», Surveys in differential geometry 8, 171-189 (2003).
D. McDuff and D. Salamon, Introduction to symplectic topology (Oxford University Press, Mar. 2017).
R. H. Abraham and J. E. Marsden, Foundations of mechanics, eng, 2. ed., rev., enl., and reset (Perseus Books, Cambridge, Mass, 2002).
R. Bryant, «An introduction to Lie groups and symplectic geometry», in Geometry and Quantum Field Theory, Vol. 1, edited by D. S. Freed and K. K. Uhlenbeck, IAS/Park City mathematics series (AMS and IAS/Park City Mathematics Institute, 1995), pp. 5-181.
D. Huybrechts, Complex geometry: an introduction, Universitext (Springer, Berlin ; New York, 2005), 309 pp.
N. Hitchin, «Hyperkähler manifolds», Séminaire Bourbaki 34, 137-166 (1992).
A. Schmeding, An introduction to infinite-dimensional differential geometry, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2022).
H. Amiri, H. Glöckner, and A. Schmeding, «Lie groupoids of mappings taking values in a Lie groupoid», en, Archivum Mathematicum, 307-356 (2020).
A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and Its Applications (Springer Verlag, 1997).
K.-H. Neeb, Infinite-Dimensional Lie Groups, 2005.
J. M. Lee, Introduction to smooth manifolds, 2nd ed, Graduate texts in mathematics 218 (Springer, 2013).
H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts Basler Lehrbücher (Birkhäuser, Basel, 1994).
J. Marsden and A. Weinstein, «Reduction of symplectic manifolds with symmetry», en, Reports on Mathematical Physics 5, 121-130 (1974).
S. K. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, eng, Reprinted, Oxford math- ematical monographs (Clarendon Press, Oxford, 2007).
E. Calabi, «Métriques kählériennes et fibrés holomorphes», Annales scientifiques de l'École normale supérieure 12, 269-294 (1979).
P. Michor and C. Vizman, «n-transitivity of certain diffeomorphism groups.», Acta Mathematica Universitatis Comenianae. New Series 63, 221-225 (1994).
H. Omori, «On Banach-Lie groups acting on finite dimensional manifolds», Tohoku Mathematical Journal 30, 223-250 (1978).
J. B. Conway, A Course in Functional Analysis, en, Vol. 96, Graduate Texts in Mathematics (Springer New York, New York, NY, 2007).
R. Meise and D. Vogt, Introduction to functional analysis, Oxford graduate texts in mathematics 2 (Clarendon Press ; Oxford University Press, Oxford : New York, 1997).
P. W. Michor, Manifolds of differentiable mappings, Shiva mathematics series ; 3 (Shiva Pub, Orpington [Eng.], 1980).
L. C. Evans, Partial differential equations, 2nd ed, Graduate studies in mathematics v. 19, OCLC: ocn465190110 (American Mathematical Society, Providence, R.I, 2010).
C.-V. Pao, Nonlinear parabolic and elliptic equations, Softcover reprint of the hardcover 1st edition 1992 (Springer Science + Business Media, LLC, New York, 2013).
D. H. Phong, J. Song, and J. Sturm, «Complex Monge Ampere Equations», 10.48550/ARXIV.1209. 2203 (2012).
X. Chen, «On the lower bound of the Mabuchi energy and its application», International Mathematics Research Notices 2000, 607 (2000).
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 59 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/35d57432-2710-4719-9fcc-306527bab770/download
https://repositorio.uniandes.edu.co/bitstreams/944cd786-ed31-487a-91b1-bf93cbc74bb9/download
https://repositorio.uniandes.edu.co/bitstreams/0825ab47-8f8c-4c05-acc1-b3458546228e/download
https://repositorio.uniandes.edu.co/bitstreams/01c2971d-10ef-43c3-b2d9-c6c7561f5656/download
https://repositorio.uniandes.edu.co/bitstreams/469a4b17-dde6-49ba-a678-f0f24714273e/download
https://repositorio.uniandes.edu.co/bitstreams/f8c20627-0e5a-4fca-82af-fac21324d271/download
https://repositorio.uniandes.edu.co/bitstreams/41aa011c-3a14-47cf-8fae-705e198c1d53/download
https://repositorio.uniandes.edu.co/bitstreams/5f235997-03b0-4ac6-b025-c9e0759879a2/download
bitstream.checksum.fl_str_mv 462f8b85cdb67eab02bdf8a495fd1e7e
c054732c11403a2f7f7e3a6ef9670e32
87763779e588adb3b574f37cca52bdfd
4f4cb71c05f6b4f11419349bd5e21d72
4460e5956bc1d1639be9ae6146a50347
2545da205e75784032c23c1b924c03e7
08b106dfeb12472e88207a069e15ba30
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159198364434432
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::2372-1Dorado Toro, Daniel Fernandofedb70f0-3ccf-48f7-92c8-02ed2cd3377a600Cortissoz Iriarte, Jean Carlos2023-08-02T13:28:27Z2023-08-02T13:28:27Z2023-06-01http://hdl.handle.net/1992/69072instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this work, we use this moment map to relate solutions to certain differential equations to (i) diffeomorphisms of compact Riemann surfaces, (ii) additional Kähler metrics on a given compact Kähler manifold, and (iii) symplectic forms on 4-manifolds.MatemáticoPregrado59 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasThe moment map and the group of volume-preserving diffeomorphisms: applications to differential geometryTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDifferential geometryMoment mapSymplectic geometryManifoldsKähler manifoldsInfinite-dimensional manifoldsDiffeomorphism groupsMatemáticasF. Klein, «Vergleichende Betrachtungen über neuere geometrische Forschungen», de, Mathematische Annalen 43, 63-100 (1893).K. Mann, «The Structure of Homeomorphism and Diffeomorphism Groups», en, Notices of the Amer- ican Mathematical Society 68, 1 (2021).S. K. Donaldson, «Moment maps and diffeomorphisms», Surveys in differential geometry 3, 107-127 (2002).S. K. Donaldson, «Moment maps in differential geometry», Surveys in differential geometry 8, 171-189 (2003).D. McDuff and D. Salamon, Introduction to symplectic topology (Oxford University Press, Mar. 2017).R. H. Abraham and J. E. Marsden, Foundations of mechanics, eng, 2. ed., rev., enl., and reset (Perseus Books, Cambridge, Mass, 2002).R. Bryant, «An introduction to Lie groups and symplectic geometry», in Geometry and Quantum Field Theory, Vol. 1, edited by D. S. Freed and K. K. Uhlenbeck, IAS/Park City mathematics series (AMS and IAS/Park City Mathematics Institute, 1995), pp. 5-181.D. Huybrechts, Complex geometry: an introduction, Universitext (Springer, Berlin ; New York, 2005), 309 pp.N. Hitchin, «Hyperkähler manifolds», Séminaire Bourbaki 34, 137-166 (1992).A. Schmeding, An introduction to infinite-dimensional differential geometry, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2022).H. Amiri, H. Glöckner, and A. Schmeding, «Lie groupoids of mappings taking values in a Lie groupoid», en, Archivum Mathematicum, 307-356 (2020).A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and Its Applications (Springer Verlag, 1997).K.-H. Neeb, Infinite-Dimensional Lie Groups, 2005.J. M. Lee, Introduction to smooth manifolds, 2nd ed, Graduate texts in mathematics 218 (Springer, 2013).H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts Basler Lehrbücher (Birkhäuser, Basel, 1994).J. Marsden and A. Weinstein, «Reduction of symplectic manifolds with symmetry», en, Reports on Mathematical Physics 5, 121-130 (1974).S. K. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, eng, Reprinted, Oxford math- ematical monographs (Clarendon Press, Oxford, 2007).E. Calabi, «Métriques kählériennes et fibrés holomorphes», Annales scientifiques de l'École normale supérieure 12, 269-294 (1979).P. Michor and C. Vizman, «n-transitivity of certain diffeomorphism groups.», Acta Mathematica Universitatis Comenianae. New Series 63, 221-225 (1994).H. Omori, «On Banach-Lie groups acting on finite dimensional manifolds», Tohoku Mathematical Journal 30, 223-250 (1978).J. B. Conway, A Course in Functional Analysis, en, Vol. 96, Graduate Texts in Mathematics (Springer New York, New York, NY, 2007).R. Meise and D. Vogt, Introduction to functional analysis, Oxford graduate texts in mathematics 2 (Clarendon Press ; Oxford University Press, Oxford : New York, 1997).P. W. Michor, Manifolds of differentiable mappings, Shiva mathematics series ; 3 (Shiva Pub, Orpington [Eng.], 1980).L. C. Evans, Partial differential equations, 2nd ed, Graduate studies in mathematics v. 19, OCLC: ocn465190110 (American Mathematical Society, Providence, R.I, 2010).C.-V. Pao, Nonlinear parabolic and elliptic equations, Softcover reprint of the hardcover 1st edition 1992 (Springer Science + Business Media, LLC, New York, 2013).D. H. Phong, J. Song, and J. Sturm, «Complex Monge Ampere Equations», 10.48550/ARXIV.1209. 2203 (2012).X. Chen, «On the lower bound of the Mabuchi energy and its application», International Mathematics Research Notices 2000, 607 (2000).201821010Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2372-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2372-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::2372-1THUMBNAILDanielDorado-ProyectoDeGrado.pdf.jpgDanielDorado-ProyectoDeGrado.pdf.jpgIM Thumbnailimage/jpeg11149https://repositorio.uniandes.edu.co/bitstreams/35d57432-2710-4719-9fcc-306527bab770/download462f8b85cdb67eab02bdf8a495fd1e7eMD56Daniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdf.jpgDaniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdf.jpgIM Thumbnailimage/jpeg15740https://repositorio.uniandes.edu.co/bitstreams/944cd786-ed31-487a-91b1-bf93cbc74bb9/downloadc054732c11403a2f7f7e3a6ef9670e32MD58ORIGINALDanielDorado-ProyectoDeGrado.pdfDanielDorado-ProyectoDeGrado.pdfTrabajo de gradoapplication/pdf1612925https://repositorio.uniandes.edu.co/bitstreams/0825ab47-8f8c-4c05-acc1-b3458546228e/download87763779e588adb3b574f37cca52bdfdMD53Daniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdfDaniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdfHIDEapplication/pdf329705https://repositorio.uniandes.edu.co/bitstreams/01c2971d-10ef-43c3-b2d9-c6c7561f5656/download4f4cb71c05f6b4f11419349bd5e21d72MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/469a4b17-dde6-49ba-a678-f0f24714273e/download4460e5956bc1d1639be9ae6146a50347MD52TEXTDanielDorado-ProyectoDeGrado.pdf.txtDanielDorado-ProyectoDeGrado.pdf.txtExtracted texttext/plain143912https://repositorio.uniandes.edu.co/bitstreams/f8c20627-0e5a-4fca-82af-fac21324d271/download2545da205e75784032c23c1b924c03e7MD55Daniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdf.txtDaniel Dorado - autorizacion tesis - Agosto 1 de 2023.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/41aa011c-3a14-47cf-8fae-705e198c1d53/download08b106dfeb12472e88207a069e15ba30MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/5f235997-03b0-4ac6-b025-c9e0759879a2/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/69072oai:repositorio.uniandes.edu.co:1992/690722024-03-13 12:11:13.523http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==