Algoritmo de localización de fallas en sistemas de distribución basado en machine learning

This work presents a fault location method in distribution systems based on neuronal networks using a phase-angle jump as the model?s single input. The IEEE 34 nodes system was used. Different fault scenarios have been considered to train ANN models including various incipient angles, fault types, f...

Full description

Autores:
Gordillo Sierra, Juan David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51511
Acceso en línea:
http://hdl.handle.net/1992/51511
Palabra clave:
Sistemas de energía eléctrica
Distribución de energía eléctrica
Fallas en la energía eléctrica
Localización de fallas eléctricas
Redes eléctricas inteligentes
Aprendizaje automático (Inteligencia artificial)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:This work presents a fault location method in distribution systems based on neuronal networks using a phase-angle jump as the model?s single input. The IEEE 34 nodes system was used. Different fault scenarios have been considered to train ANN models including various incipient angles, fault types, fault resistance values, and various fault distances that typically affect a fault location algorithm?s accuracy. Different load conditions were not considered in this particular study. Nine different models were trained specifically with particular fault types and fault resistance values and one model was trained with all fault scenarios regardless of the latter obtaining the best performance with three different models trained specifically for locating each fault type considered.