The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation

With IoT networks' rapid advancement and significant cybersecurity challenges, the proposal and analysis of models capable of studying malware propagation within these structures have become highly relevant. This paper aims to formulate and implement a SEIRS-NIMFA model to analyze the propagati...

Full description

Autores:
Quiroga Sánchez, Laura Gabriela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68320
Acceso en línea:
http://hdl.handle.net/1992/68320
Palabra clave:
IoT networks
Epidemiology
Malware propagation modeling
SEIRS
Mean-field approximation
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_364097bd991c4c31ad08bea57bce6fbb
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68320
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
title The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
spellingShingle The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
IoT networks
Epidemiology
Malware propagation modeling
SEIRS
Mean-field approximation
Ingeniería
title_short The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
title_full The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
title_fullStr The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
title_full_unstemmed The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
title_sort The SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
dc.creator.fl_str_mv Quiroga Sánchez, Laura Gabriela
dc.contributor.advisor.none.fl_str_mv Montoya Orozco, Germán Adolfo
Lozano Garzon, Carlos Andres
dc.contributor.author.none.fl_str_mv Quiroga Sánchez, Laura Gabriela
dc.subject.keyword.none.fl_str_mv IoT networks
Epidemiology
Malware propagation modeling
SEIRS
Mean-field approximation
topic IoT networks
Epidemiology
Malware propagation modeling
SEIRS
Mean-field approximation
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description With IoT networks' rapid advancement and significant cybersecurity challenges, the proposal and analysis of models capable of studying malware propagation within these structures have become highly relevant. This paper aims to formulate and implement a SEIRS-NIMFA model to analyze the propagation of malware infections with a latency period. To achieve this, a SEIRS model was mathematically described using an individual-based approach and then implemented using Python. This study examines the effects of varying network topology, the initially infected device, and the model parameters on the propagation dynamics. The results demonstrate that this novel model can effectively support the decision-making processes for implementing security measures in real-life scenarios. Furthermore, the model and its implementation are open to further extensions, enhancing their potential applicability.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-11T18:21:48Z
dc.date.available.none.fl_str_mv 2023-07-11T18:21:48Z
dc.date.issued.none.fl_str_mv 2023-07-07
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68320
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68320
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv SonicWall. Mid-year update: 2022 SonicWall Cyber Threat Report. https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf. (2022-MidYearThreatReport-JK-6641). 2022.
A. Abusitta et al. 'Deep learning-enabled anomaly detection for IoT systems'. In: Internet of Things 21(2023). DOI: 10.1016/j.iot.2022.100656.
M. Antonakakis et al. 'Understanding the Mirai Botnet'. In: 26th USENIX Security Symposium (USENIX Security 17). USENIX Association. Vancouver, BC, 2017, pp. 1093-1110.
P. Van Mieghem. 'The N-intertwined SIS epidemic network model'. In: Computing 93 (2011), pp. 147-169. DOI: 10.1007/s00607-011-0155-y
I. Martínez et al. 'MalSEIRS: Forecasting Malware Spread Based on Compartmental Models in Epidemiology'. In: Complexity 2021 (2021), Article ID 5415724. DOI: 10.1155/2021/5415724.
A. Mahboubi, S. Camtepe, and K. Ansari. 'Stochastic modeling of IoT botnet spread: A short survey on mobile malware spread modeling'. In: IEEE Access (2020). DOI: 10.1109/ACCESS.2020.3044277.
S. Bonaccorsi and S. Turri. 'Deterministic and Stochastic Mean-Field SIRS Models on Heterogeneous Networks'. In: Discrete and Continuous Models in the Theory of Networks. Ed. by Fatihcan M. Atay, Pavel B. Kurasov, and Delio Mugnolo. Vol. 281. Birkhauser Cham, 2020, pp. 67-89. DOI: 10.1007/978-3-030-44097-8
K. L. Lueth et al. Market Insights for the Internet of Things: State of IoT - Spring 2022. IoT Analytics. 2022. URL: https://iot-analytics.com/product/state-of-iot-spring-2022/.
P. Kumari and A. K. Jain. 'A comprehensive study of DDoS attacks over IoT network and their countermeasures'. In: Computers and Security 127 (2023). DOI: 10.1016/j.cose.2023.103096.
A. A. Haghrah, S. Ghaemi, and M. A. Badamchizadeh. 'Fuzzy-SIRD model: Forecasting COVID-19 death tolls considering governments intervention'. In: Artificial Intelligence in Medicine 134 (2022). DOI: 10.1016/j.artmed.2022.102422.
N. Groves-Kirkby et al. 'Large-scale calibration and simulation of COVID-19 epidemiologic scenarios to support healthcare planning'. In: Epidemics 42 (2023). DOI: 10.1016/j.epidem.2022.100662.
M. Galván. 'NIMFA Epidemiological model for studying malware behavior in IoT Networks'. Undergraduate thesis. Bogota, Colombia, 2021.
J. Flórez. 'Modelo epidemiológico SIS para estudiar el comportamiento del malware en redes IoT'. Undergraduate thesis. Bogota, Colombia, 2021.
O. N. Bjørnstad et al. 'The SEIRS model for infectious disease dynamics'. In: Nature Methods 17.6 (2020), pp. 557-558. DOI: 10.1038/s41592-020-0856-2.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 16 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0f399e86-7e8d-42c8-ab8d-0623b1b7cb06/download
https://repositorio.uniandes.edu.co/bitstreams/c7d31384-eddb-4ef8-a5ba-0d2e32a2c33e/download
https://repositorio.uniandes.edu.co/bitstreams/a5547b9b-12ae-4b9b-bc51-a48635fa7b5f/download
https://repositorio.uniandes.edu.co/bitstreams/3e454399-01c4-489d-bee0-941dc9a44d8d/download
https://repositorio.uniandes.edu.co/bitstreams/732925fd-4c88-48e9-bc65-6398b1514bc2/download
https://repositorio.uniandes.edu.co/bitstreams/4f8caca2-08ca-46f4-8aa7-44067571fc8b/download
https://repositorio.uniandes.edu.co/bitstreams/a2121ca3-98a3-40e2-b68f-086395b7c383/download
https://repositorio.uniandes.edu.co/bitstreams/a28380be-8692-457a-bc1c-c39d8fa85045/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
4a38097b9abe76a227ce6f96daa7efbb
f1d512edf5576965440f903e60f22328
4460e5956bc1d1639be9ae6146a50347
9b96d8494834c739e0772097ebf661b7
e81c481006b1013ee81c1ef1d5d59dd2
b965ab8eb893a9cae5e8f2e237596bfc
1ad177c498788dcfb70abad155b1892d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133891825205248
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Orozco, Germán Adolfoc25c116e-3304-4817-b93f-a89766e4dbfc600Lozano Garzon, Carlos Andresvirtual::5959-1Quiroga Sánchez, Laura Gabriela277ad675-228c-4a36-936d-81ad9a6c9a6b6002023-07-11T18:21:48Z2023-07-11T18:21:48Z2023-07-07http://hdl.handle.net/1992/68320instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/With IoT networks' rapid advancement and significant cybersecurity challenges, the proposal and analysis of models capable of studying malware propagation within these structures have become highly relevant. This paper aims to formulate and implement a SEIRS-NIMFA model to analyze the propagation of malware infections with a latency period. To achieve this, a SEIRS model was mathematically described using an individual-based approach and then implemented using Python. This study examines the effects of varying network topology, the initially infected device, and the model parameters on the propagation dynamics. The results demonstrate that this novel model can effectively support the decision-making processes for implementing security measures in real-life scenarios. Furthermore, the model and its implementation are open to further extensions, enhancing their potential applicability.Ingeniero de Sistemas y ComputaciónPregrado16 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónThe SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPIoT networksEpidemiologyMalware propagation modelingSEIRSMean-field approximationIngenieríaSonicWall. Mid-year update: 2022 SonicWall Cyber Threat Report. https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf. (2022-MidYearThreatReport-JK-6641). 2022.A. Abusitta et al. 'Deep learning-enabled anomaly detection for IoT systems'. In: Internet of Things 21(2023). DOI: 10.1016/j.iot.2022.100656.M. Antonakakis et al. 'Understanding the Mirai Botnet'. In: 26th USENIX Security Symposium (USENIX Security 17). USENIX Association. Vancouver, BC, 2017, pp. 1093-1110.P. Van Mieghem. 'The N-intertwined SIS epidemic network model'. In: Computing 93 (2011), pp. 147-169. DOI: 10.1007/s00607-011-0155-yI. Martínez et al. 'MalSEIRS: Forecasting Malware Spread Based on Compartmental Models in Epidemiology'. In: Complexity 2021 (2021), Article ID 5415724. DOI: 10.1155/2021/5415724.A. Mahboubi, S. Camtepe, and K. Ansari. 'Stochastic modeling of IoT botnet spread: A short survey on mobile malware spread modeling'. In: IEEE Access (2020). DOI: 10.1109/ACCESS.2020.3044277.S. Bonaccorsi and S. Turri. 'Deterministic and Stochastic Mean-Field SIRS Models on Heterogeneous Networks'. In: Discrete and Continuous Models in the Theory of Networks. Ed. by Fatihcan M. Atay, Pavel B. Kurasov, and Delio Mugnolo. Vol. 281. Birkhauser Cham, 2020, pp. 67-89. DOI: 10.1007/978-3-030-44097-8K. L. Lueth et al. Market Insights for the Internet of Things: State of IoT - Spring 2022. IoT Analytics. 2022. URL: https://iot-analytics.com/product/state-of-iot-spring-2022/.P. Kumari and A. K. Jain. 'A comprehensive study of DDoS attacks over IoT network and their countermeasures'. In: Computers and Security 127 (2023). DOI: 10.1016/j.cose.2023.103096.A. A. Haghrah, S. Ghaemi, and M. A. Badamchizadeh. 'Fuzzy-SIRD model: Forecasting COVID-19 death tolls considering governments intervention'. In: Artificial Intelligence in Medicine 134 (2022). DOI: 10.1016/j.artmed.2022.102422.N. Groves-Kirkby et al. 'Large-scale calibration and simulation of COVID-19 epidemiologic scenarios to support healthcare planning'. In: Epidemics 42 (2023). DOI: 10.1016/j.epidem.2022.100662.M. Galván. 'NIMFA Epidemiological model for studying malware behavior in IoT Networks'. Undergraduate thesis. Bogota, Colombia, 2021.J. Flórez. 'Modelo epidemiológico SIS para estudiar el comportamiento del malware en redes IoT'. Undergraduate thesis. Bogota, Colombia, 2021.O. N. Bjørnstad et al. 'The SEIRS model for infectious disease dynamics'. In: Nature Methods 17.6 (2020), pp. 557-558. DOI: 10.1038/s41592-020-0856-2.201922965Publicationhttps://scholar.google.es/citations?user=WRJlR-UAAAAJvirtual::5959-10000-0003-2920-6320virtual::5959-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000219541virtual::5959-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::5959-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::5959-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/0f399e86-7e8d-42c8-ab8d-0623b1b7cb06/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdf.txtThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdf.txtExtracted texttext/plain45396https://repositorio.uniandes.edu.co/bitstreams/c7d31384-eddb-4ef8-a5ba-0d2e32a2c33e/download4a38097b9abe76a227ce6f96daa7efbbMD55FormatoAutorizacionYEntregaTesis.pdf.txtFormatoAutorizacionYEntregaTesis.pdf.txtExtracted texttext/plain1424https://repositorio.uniandes.edu.co/bitstreams/a5547b9b-12ae-4b9b-bc51-a48635fa7b5f/downloadf1d512edf5576965440f903e60f22328MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/3e454399-01c4-489d-bee0-941dc9a44d8d/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdf.jpgThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdf.jpgIM Thumbnailimage/jpeg28938https://repositorio.uniandes.edu.co/bitstreams/732925fd-4c88-48e9-bc65-6398b1514bc2/download9b96d8494834c739e0772097ebf661b7MD56FormatoAutorizacionYEntregaTesis.pdf.jpgFormatoAutorizacionYEntregaTesis.pdf.jpgIM Thumbnailimage/jpeg16213https://repositorio.uniandes.edu.co/bitstreams/4f8caca2-08ca-46f4-8aa7-44067571fc8b/downloade81c481006b1013ee81c1ef1d5d59dd2MD58ORIGINALThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdfThe SEIRS NIMFA Compartmental Epidemic Model for the Analysis of IoT Malware Propagation.pdfTrabajo de gradoapplication/pdf1578400https://repositorio.uniandes.edu.co/bitstreams/a2121ca3-98a3-40e2-b68f-086395b7c383/downloadb965ab8eb893a9cae5e8f2e237596bfcMD54FormatoAutorizacionYEntregaTesis.pdfFormatoAutorizacionYEntregaTesis.pdfHIDEapplication/pdf476309https://repositorio.uniandes.edu.co/bitstreams/a28380be-8692-457a-bc1c-c39d8fa85045/download1ad177c498788dcfb70abad155b1892dMD531992/68320oai:repositorio.uniandes.edu.co:1992/683202024-03-13 13:04:04.486http://creativecommons.org/licenses/by-nc-nd/4.0/embargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==