Implementation of phase masking for single molecule tracking in 3D space.

This project implemented techniques to track single molecules in 3D space inside living cells using a specialized microscope called a light sheet fluorescence microscope. One major challenge was extending the depth range over which molecules could be accurately tracked. To address this, we used a li...

Full description

Autores:
Castelblanco Villalobos, Alex Artemis
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75217
Acceso en línea:
https://hdl.handle.net/1992/75217
Palabra clave:
PSF
Phase mask
Microscopy
SLM
Diffusion
LSM
SPIM
Tracking
Fluorescence
Molecule
Fourier optics
Optics
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_35496d033f1268c8f89b063f950e3e6f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75217
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Implementation of phase masking for single molecule tracking in 3D space.
title Implementation of phase masking for single molecule tracking in 3D space.
spellingShingle Implementation of phase masking for single molecule tracking in 3D space.
PSF
Phase mask
Microscopy
SLM
Diffusion
LSM
SPIM
Tracking
Fluorescence
Molecule
Fourier optics
Optics
Física
title_short Implementation of phase masking for single molecule tracking in 3D space.
title_full Implementation of phase masking for single molecule tracking in 3D space.
title_fullStr Implementation of phase masking for single molecule tracking in 3D space.
title_full_unstemmed Implementation of phase masking for single molecule tracking in 3D space.
title_sort Implementation of phase masking for single molecule tracking in 3D space.
dc.creator.fl_str_mv Castelblanco Villalobos, Alex Artemis
dc.contributor.advisor.none.fl_str_mv Forero Shelton, Antonio Manu
dc.contributor.author.none.fl_str_mv Castelblanco Villalobos, Alex Artemis
dc.contributor.jury.none.fl_str_mv Nuñez Portela, Mayerlin
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Biofísica
dc.subject.keyword.eng.fl_str_mv PSF
Phase mask
Microscopy
SLM
Diffusion
LSM
SPIM
Tracking
Fluorescence
Molecule
Fourier optics
Optics
topic PSF
Phase mask
Microscopy
SLM
Diffusion
LSM
SPIM
Tracking
Fluorescence
Molecule
Fourier optics
Optics
Física
dc.subject.themes.spa.fl_str_mv Física
description This project implemented techniques to track single molecules in 3D space inside living cells using a specialized microscope called a light sheet fluorescence microscope. One major challenge was extending the depth range over which molecules could be accurately tracked. To address this, we used a liquid crystal spatial light modulator (SLM) to engineer the point spread function (PSF) of the microscope, which is the image produced by a point source of light. We employed a special "double helix" phase mask pattern to project onto the SLM. This modified the PSF in a way that encoded information about the depth position of the molecule into the shape of the PSF image. Careful alignment and sizing of the phase mask on the SLM was required. Additionally we developed software to automatically detect the positions of single fluorescent particles from the modified PSF images and reconstruct their 3D trajectories over time. This allowed us quantify the diffusion dynamics of the particles, which relates to how molecules move around inside cells. To validate our approach, we measured the diffusion coefficients of fluorescent microbeads suspended in a gel, confirming our method worked accurately. In summary, this phase mask technique coupled with the 3D tracking software enabled extending the depth range for precise single molecule tracking in microscopy of living cells. This could help provide insights into the intricate dynamics underlying biological processes at the molecular level.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-02T18:29:21Z
dc.date.available.none.fl_str_mv 2024-12-02T18:29:21Z
dc.date.issued.none.fl_str_mv 2024-12-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75217
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75217
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv J. J. H. Ackerman and J. J. Neil, “Biophysics of Diffusion in Cells,” in Diffusion MRI: Theory, Methods, and Applications, P. Jones Derek K., Ed., Oxford University Press, 2010, p. 0. doi: 10.1093/med/9780195369779.003.0008.
“Adaptive optical microscopy: the ongoing quest for a perfect image | Light: Science & Applications.” Accessed: Apr. 02, 2024. [Online]. Available: https://www.nature.com/articles/lsa201446
Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys Rev Lett, vol. 113, no. 13, p. 133902, Sep. 2014.
K. Hampson et al., “Adaptive optics for high-resolution imaging,” Nature Reviews Methods Primers, vol. 1, p. 68, Oct. 2021, doi: 10.1038/s43586-021-00066-7.
V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” Journal of Modern Optics, vol. 58, no. 18, pp. 1678–1678, Oct. 2011, doi: 10.1080/09500340.2011.633763.
R. J. Mathar, English: Zernike polynomials. 2010. Accessed: Feb. 22, 2024. [Online]. Available: https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf
“Digital Imaging Processing.” Accessed: Mar. 31, 2024. [Online]. Available: https://www.pearson.com/en-us/subject-catalog/p/digital-imageprocessing/P200000003224/9780137848560
J. W. Goodman, Introduction to Fourier Optics, 2nd ed. McGraw-Hill, 1996.
C. Williams and O. A. Becklund, Introduction to the Optical Transfer Function, 1st ed. Bellingham: SPIEóThe International Society for Optical Engineering, 2002.
R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell, 2nd, illustrated ed. New York: Garland Science, 2013.
W. Hong et al., “Adaptive light-sheet fluorescence microscopy with a deformable mirror for video-rate volumetric imaging,” Applied Physics Letters, vol. 121, p. 193703, Nov. 2022, doi: 10.1063/5.0125946.
M. Lelek et al., “Single-molecule localization microscopy,” Nat Rev Methods Primers, vol. 1, no. 1, Art. no. 1, Jun. 2021, doi: 10.1038/s43586-021-00038-x.
A. Martins, “ngmsoftware/blender_wavefront_sensor.” /dev/.mind, Jun. 27, 2023. Accessed: Apr. 02, 2024. [Online]. Available: https://github.com/ngmsoftware/blender_wavefront_sensor
C. Manzo and M. F. Garcia-Parajo, “A review of progress in single particle tracking: from methods to biophysical insights,” Rep Prog Phys, vol. 78, no. 12, p. 124601, Dec. 2015, doi: 10.1088/0034-4885/78/12/124601.
T. Kuhn, J. Hettich, R. Davtyan, and J. C. M. Gebhardt, “Single molecule tracking and analysis framework including theory-predicted parameter settings,” Sci Rep, vol. 11, no. 1, Art. no. 1, May 2021, doi: 10.1038/s41598-021-88802-7.
I. Wohl and E. Sherman, “ATP-Dependent Diffusion Entropy and Homogeneity in Living Cells,” Entropy (Basel), vol. 21, no. 10, p. 962, Oct. 2019, doi: 10.3390/e21100962.
S. C. Weber, A. J. Spakowitz, and J. A. Theriot, “Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci,” Proceedings of the National Academy of Sciences, vol. 109, no. 19, pp. 7338–7343, May 2012, doi: 10.1073/pnas.1119505109.
E. J. Gualda, H. Pereira, G. G. Martins, R. Gardner, and N. Moreno, “Threedimensional imaging flow cytometry through light-sheet fluorescence microscopy,” Cytometry Part A, vol. 91, no. 2, pp. 144–151, 2017, doi: 10.1002/cyto.a.23046.
T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy,” Neuron, vol. 57, no. 5, pp. 661–672, Mar. 2008, doi: 10.1016/j.neuron.2008.01.011.
R. A. Abello Verbel, “Implementación de un microscopio de fluorescencia con una máscara de fase para ampliar su profundidad de campo,” Universidad de los Andes, Física, Facultad de Ciencias, Departamento de Física, 2022.
“Shearing Interferometers.” Accessed: Dec. 13, 2023. [Online]. Available: https://www.thorlabs.com
A. D. Chandra and A. Banerjee, “Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm,” Journal of Modern Optics, vol. 67, no. 7, pp. 628–637, Apr. 2020, doi: 10.1080/09500340.2020.1760954.
M. J. Townson, O. J. D. Farley, G. O. de Xivry, J. Osborn, and A. P. Reeves, “AOtools: a Python package for adaptive optics modelling and analysis,” Opt. Express, OE, vol. 27, no. 22, pp. 31316–31329, Oct. 2019, doi: 10.1364/OE.27.031316.
B. Dong, D. Ren, and X. Zhang, “Stochastic parallel gradient descent based adaptive optics used for high contrast imaging coronagraph,” Res. Astron. Astrophys., vol. 11, no. 8, pp. 997–1002, Aug. 2011, doi: 10.1088/1674-4527/11/8/011.
C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation,” Opt. Express, OE, vol. 22, no. 4, pp. 4029–4037, Feb. 2014, doi: 10.1364/OE.22.004029.
“Microspheres—Section 6.5 - CO.” Accessed: May 23, 2024. [Online]. Available: https://www.thermofisher.com/ht/en/home/references/molecular-probes-thehandbook/ultrasensitive-detection-technology/microspheres.html
M. A. Perilla Rubio, “Óptca adaptativa en microscopios para la reducción de aberraciones en volúmenes,” Dec. 2022, Accessed: Mar. 26, 2024. [Online]. Available: http://hdl.handle.net/1992/69093
A. Klauss, F. Conrad, and C. Hille, “Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy,” Sci Rep, vol. 7, no. 1, p. 15699, Nov. 2017, doi: 10.1038/s41598-01715967-5.
“Physics of agarose fluid gels: Rheological properties and microstructure - PMC.” Accessed: May 23, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255179/
A. Castelblanco, “AriCastel/SPIM2-revisited.” Mar. 10, 2024. Accessed: May 02, 2024. [Online]. Available: https://github.com/AriCastel/SPIM2-revisited
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 39 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/a3b4f63f-d1af-4af1-8a92-f82d3247f323/download
https://repositorio.uniandes.edu.co/bitstreams/51454966-3358-4cc4-8010-ab4abb1e7793/download
https://repositorio.uniandes.edu.co/bitstreams/2dab41a7-ab4a-49d0-9bcc-e66c4932ca8b/download
https://repositorio.uniandes.edu.co/bitstreams/c140eb2b-5a19-49d5-a7ac-998e97952834/download
https://repositorio.uniandes.edu.co/bitstreams/730ca456-8fc4-40f9-94bb-72a384a13cac/download
https://repositorio.uniandes.edu.co/bitstreams/c40a5732-663c-47fb-9a84-b00ca57dfc80/download
https://repositorio.uniandes.edu.co/bitstreams/44789d32-d6e0-4310-a15f-5f4fcc99f31b/download
https://repositorio.uniandes.edu.co/bitstreams/2a5e0023-03e3-4c58-8a13-1af6aac91d79/download
bitstream.checksum.fl_str_mv d9928ea9cfbd49f545698240e2d9e51c
51f8b12d6ec4c5c85c32d7d937dd23a0
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
a39c5ce81ce703a02db310ea4d469f59
f6c4a5863262f65616bd02526407684f
e46a9777396e7b2e02054d747c63ff72
ee2944445b4b58a501239431828823c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111979930255360
spelling Forero Shelton, Antonio Manuvirtual::20167-1Castelblanco Villalobos, Alex ArtemisNuñez Portela, Mayerlinvirtual::20166-1Facultad de Ciencias::Biofísica2024-12-02T18:29:21Z2024-12-02T18:29:21Z2024-12-02https://hdl.handle.net/1992/75217instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This project implemented techniques to track single molecules in 3D space inside living cells using a specialized microscope called a light sheet fluorescence microscope. One major challenge was extending the depth range over which molecules could be accurately tracked. To address this, we used a liquid crystal spatial light modulator (SLM) to engineer the point spread function (PSF) of the microscope, which is the image produced by a point source of light. We employed a special "double helix" phase mask pattern to project onto the SLM. This modified the PSF in a way that encoded information about the depth position of the molecule into the shape of the PSF image. Careful alignment and sizing of the phase mask on the SLM was required. Additionally we developed software to automatically detect the positions of single fluorescent particles from the modified PSF images and reconstruct their 3D trajectories over time. This allowed us quantify the diffusion dynamics of the particles, which relates to how molecules move around inside cells. To validate our approach, we measured the diffusion coefficients of fluorescent microbeads suspended in a gel, confirming our method worked accurately. In summary, this phase mask technique coupled with the 3D tracking software enabled extending the depth range for precise single molecule tracking in microscopy of living cells. This could help provide insights into the intricate dynamics underlying biological processes at the molecular level.Pregrado39 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implementation of phase masking for single molecule tracking in 3D space.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPSFPhase maskMicroscopySLMDiffusionLSMSPIMTrackingFluorescenceMoleculeFourier opticsOpticsFísicaJ. J. H. Ackerman and J. J. Neil, “Biophysics of Diffusion in Cells,” in Diffusion MRI: Theory, Methods, and Applications, P. Jones Derek K., Ed., Oxford University Press, 2010, p. 0. doi: 10.1093/med/9780195369779.003.0008.“Adaptive optical microscopy: the ongoing quest for a perfect image | Light: Science & Applications.” Accessed: Apr. 02, 2024. [Online]. Available: https://www.nature.com/articles/lsa201446Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys Rev Lett, vol. 113, no. 13, p. 133902, Sep. 2014.K. Hampson et al., “Adaptive optics for high-resolution imaging,” Nature Reviews Methods Primers, vol. 1, p. 68, Oct. 2021, doi: 10.1038/s43586-021-00066-7.V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” Journal of Modern Optics, vol. 58, no. 18, pp. 1678–1678, Oct. 2011, doi: 10.1080/09500340.2011.633763.R. J. Mathar, English: Zernike polynomials. 2010. Accessed: Feb. 22, 2024. [Online]. Available: https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf“Digital Imaging Processing.” Accessed: Mar. 31, 2024. [Online]. Available: https://www.pearson.com/en-us/subject-catalog/p/digital-imageprocessing/P200000003224/9780137848560J. W. Goodman, Introduction to Fourier Optics, 2nd ed. McGraw-Hill, 1996.C. Williams and O. A. Becklund, Introduction to the Optical Transfer Function, 1st ed. Bellingham: SPIEóThe International Society for Optical Engineering, 2002.R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell, 2nd, illustrated ed. New York: Garland Science, 2013.W. Hong et al., “Adaptive light-sheet fluorescence microscopy with a deformable mirror for video-rate volumetric imaging,” Applied Physics Letters, vol. 121, p. 193703, Nov. 2022, doi: 10.1063/5.0125946.M. Lelek et al., “Single-molecule localization microscopy,” Nat Rev Methods Primers, vol. 1, no. 1, Art. no. 1, Jun. 2021, doi: 10.1038/s43586-021-00038-x.A. Martins, “ngmsoftware/blender_wavefront_sensor.” /dev/.mind, Jun. 27, 2023. Accessed: Apr. 02, 2024. [Online]. Available: https://github.com/ngmsoftware/blender_wavefront_sensorC. Manzo and M. F. Garcia-Parajo, “A review of progress in single particle tracking: from methods to biophysical insights,” Rep Prog Phys, vol. 78, no. 12, p. 124601, Dec. 2015, doi: 10.1088/0034-4885/78/12/124601.T. Kuhn, J. Hettich, R. Davtyan, and J. C. M. Gebhardt, “Single molecule tracking and analysis framework including theory-predicted parameter settings,” Sci Rep, vol. 11, no. 1, Art. no. 1, May 2021, doi: 10.1038/s41598-021-88802-7.I. Wohl and E. Sherman, “ATP-Dependent Diffusion Entropy and Homogeneity in Living Cells,” Entropy (Basel), vol. 21, no. 10, p. 962, Oct. 2019, doi: 10.3390/e21100962.S. C. Weber, A. J. Spakowitz, and J. A. Theriot, “Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci,” Proceedings of the National Academy of Sciences, vol. 109, no. 19, pp. 7338–7343, May 2012, doi: 10.1073/pnas.1119505109.E. J. Gualda, H. Pereira, G. G. Martins, R. Gardner, and N. Moreno, “Threedimensional imaging flow cytometry through light-sheet fluorescence microscopy,” Cytometry Part A, vol. 91, no. 2, pp. 144–151, 2017, doi: 10.1002/cyto.a.23046.T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy,” Neuron, vol. 57, no. 5, pp. 661–672, Mar. 2008, doi: 10.1016/j.neuron.2008.01.011.R. A. Abello Verbel, “Implementación de un microscopio de fluorescencia con una máscara de fase para ampliar su profundidad de campo,” Universidad de los Andes, Física, Facultad de Ciencias, Departamento de Física, 2022.“Shearing Interferometers.” Accessed: Dec. 13, 2023. [Online]. Available: https://www.thorlabs.comA. D. Chandra and A. Banerjee, “Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm,” Journal of Modern Optics, vol. 67, no. 7, pp. 628–637, Apr. 2020, doi: 10.1080/09500340.2020.1760954.M. J. Townson, O. J. D. Farley, G. O. de Xivry, J. Osborn, and A. P. Reeves, “AOtools: a Python package for adaptive optics modelling and analysis,” Opt. Express, OE, vol. 27, no. 22, pp. 31316–31329, Oct. 2019, doi: 10.1364/OE.27.031316.B. Dong, D. Ren, and X. Zhang, “Stochastic parallel gradient descent based adaptive optics used for high contrast imaging coronagraph,” Res. Astron. Astrophys., vol. 11, no. 8, pp. 997–1002, Aug. 2011, doi: 10.1088/1674-4527/11/8/011.C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation,” Opt. Express, OE, vol. 22, no. 4, pp. 4029–4037, Feb. 2014, doi: 10.1364/OE.22.004029.“Microspheres—Section 6.5 - CO.” Accessed: May 23, 2024. [Online]. Available: https://www.thermofisher.com/ht/en/home/references/molecular-probes-thehandbook/ultrasensitive-detection-technology/microspheres.htmlM. A. Perilla Rubio, “Óptca adaptativa en microscopios para la reducción de aberraciones en volúmenes,” Dec. 2022, Accessed: Mar. 26, 2024. [Online]. Available: http://hdl.handle.net/1992/69093A. Klauss, F. Conrad, and C. Hille, “Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy,” Sci Rep, vol. 7, no. 1, p. 15699, Nov. 2017, doi: 10.1038/s41598-01715967-5.“Physics of agarose fluid gels: Rheological properties and microstructure - PMC.” Accessed: May 23, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255179/A. Castelblanco, “AriCastel/SPIM2-revisited.” Mar. 10, 2024. Accessed: May 02, 2024. [Online]. Available: https://github.com/AriCastel/SPIM2-revisited202011006Publicationhttps://scholar.google.es/citations?user=0_jvORsAAAAJvirtual::20167-1https://scholar.google.es/citations?user=znFnm4wAAAAJvirtual::20166-10000-0002-7488-7447virtual::20166-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001289730virtual::20167-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001350214virtual::20166-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::20167-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::20167-1990da92e-a2b5-4173-a3f2-32756584d30avirtual::20166-1990da92e-a2b5-4173-a3f2-32756584d30avirtual::20166-1ORIGINALCastelblancoautorizaciontesis202011006.pdfCastelblancoautorizaciontesis202011006.pdfHIDEapplication/pdf362050https://repositorio.uniandes.edu.co/bitstreams/a3b4f63f-d1af-4af1-8a92-f82d3247f323/downloadd9928ea9cfbd49f545698240e2d9e51cMD51Implementation of Phase Masking for single molecule tracking in 3D space.pdfImplementation of Phase Masking for single molecule tracking in 3D space.pdfapplication/pdf3817194https://repositorio.uniandes.edu.co/bitstreams/51454966-3358-4cc4-8010-ab4abb1e7793/download51f8b12d6ec4c5c85c32d7d937dd23a0MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/2dab41a7-ab4a-49d0-9bcc-e66c4932ca8b/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c140eb2b-5a19-49d5-a7ac-998e97952834/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTCastelblancoautorizaciontesis202011006.pdf.txtCastelblancoautorizaciontesis202011006.pdf.txtExtracted texttext/plain1974https://repositorio.uniandes.edu.co/bitstreams/730ca456-8fc4-40f9-94bb-72a384a13cac/downloada39c5ce81ce703a02db310ea4d469f59MD55Implementation of Phase Masking for single molecule tracking in 3D space.pdf.txtImplementation of Phase Masking for single molecule tracking in 3D space.pdf.txtExtracted texttext/plain74130https://repositorio.uniandes.edu.co/bitstreams/c40a5732-663c-47fb-9a84-b00ca57dfc80/downloadf6c4a5863262f65616bd02526407684fMD57THUMBNAILCastelblancoautorizaciontesis202011006.pdf.jpgCastelblancoautorizaciontesis202011006.pdf.jpgGenerated Thumbnailimage/jpeg11048https://repositorio.uniandes.edu.co/bitstreams/44789d32-d6e0-4310-a15f-5f4fcc99f31b/downloade46a9777396e7b2e02054d747c63ff72MD56Implementation of Phase Masking for single molecule tracking in 3D space.pdf.jpgImplementation of Phase Masking for single molecule tracking in 3D space.pdf.jpgGenerated Thumbnailimage/jpeg9387https://repositorio.uniandes.edu.co/bitstreams/2a5e0023-03e3-4c58-8a13-1af6aac91d79/downloadee2944445b4b58a501239431828823c8MD581992/75217oai:repositorio.uniandes.edu.co:1992/752172024-12-03 03:06:48.306http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K