Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface
Vascular grafts (VGs) are highly demanded medical devices that replace the function of a blood vessel. Current alternatives use non-degradable materials that elicit a foreign body response, leading to thrombosis and compromising blood flow. As an alternative, Tissue Engineered Vascular Grafts (TEVGs...
- Autores:
-
Rodríguez Soto, María Alejandra
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73271
- Acceso en línea:
- https://hdl.handle.net/1992/73271
- Palabra clave:
- Tissue Engineered Vascular Grafts
Regenerative medicine
Regeneration
Inflammation
Thrombogenesis
Failure
Success
Pathways
Ingeniería
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIANDES2_342fd5db463ccc0955e4749784399944 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73271 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
title |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
spellingShingle |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface Tissue Engineered Vascular Grafts Regenerative medicine Regeneration Inflammation Thrombogenesis Failure Success Pathways Ingeniería |
title_short |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
title_full |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
title_fullStr |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
title_full_unstemmed |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
title_sort |
Rational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surface |
dc.creator.fl_str_mv |
Rodríguez Soto, María Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Briceño Triana, Juan Carlos Cruz Jiménez, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Rodríguez Soto, María Alejandra |
dc.contributor.jury.none.fl_str_mv |
Wagner, William R. Sandoval, Nestor Fernando Cruz Jiménez, Juan Carlos |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería |
dc.subject.keyword.eng.fl_str_mv |
Tissue Engineered Vascular Grafts |
topic |
Tissue Engineered Vascular Grafts Regenerative medicine Regeneration Inflammation Thrombogenesis Failure Success Pathways Ingeniería |
dc.subject.keyword.none.fl_str_mv |
Regenerative medicine Regeneration Inflammation Thrombogenesis Failure Success Pathways |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Vascular grafts (VGs) are highly demanded medical devices that replace the function of a blood vessel. Current alternatives use non-degradable materials that elicit a foreign body response, leading to thrombosis and compromising blood flow. As an alternative, Tissue Engineered Vascular Grafts (TEVGs) aim to approach the biological response of native vessels through biodegradability and regenerative potential. Despite the advancements in the development of TEVGs, there are high rates of failure in pre-clinical models, few have entered clinical trials and just 2 are currently on the market. This situation highlights a lack of knowledge in the rational design of TEVGs, which requires a detailed understanding of the mechanisms behind the marked and counterproductive cellular response to the biomaterial surface under physiological flow conditions that led to the failure of current strategies. Tissue regeneration in general and in scaffolds still holds a conundrum due to the complex interplay in the regulation of inflammatory processes affected by the concentration of bioactive molecules, the macro and microstructure of the extracellular matrix, as well as its mechanical properties. For that reason, we decided to take a step back to look at the bigger picture and propose a methodologic pathway to promote advancements in TEVGs going from problem identification to innovative solutions. To this end, we have first performed an extended series of studies and research aiming to identify the current trends in TEVGs and later, the understanding of the mechanisms of cellular interaction with the TEVGs and how it modulates the arterial wall regeneration process. We then transformed this information into design parameters that we could use to improve the overall performance of an ideal TEVG. Finally, we have proposed a final TEVG prototype, our approach, measuring 11 cm in length, 3.0 mm in diameter and 1 mm in thickness, exhibits mechanical properties comparable to native arteries and demonstrates high biocompatibility and hemocompatibility, along with low thrombogenicity rates. And most importantly, it shows promising results to induce and sustain endothelialization with immunomodulatory potential. This study would be the first to report the sequential cascade of processes from inflammation to migration and maturation of vascular wall cells under physiological conditions into the regeneration process of TEVGs and how to overcome the current limitations. Main Objective: Rational engineering of a readily available TEVG that considers the macro and microstructural features of a native artery combined with bioactive molecules inclusion to improve tissue regeneration reducing the need for surgical re-interventions as a result of patency loss and consequent graft failure. Impact: Synthetic VGs are inefficient alternatives in multiple conditions, with 50% losing permeability at 5 years, and requiring costly reinterventions. Despite research on TEVGs, only a few developments have reached the market as a resorbable scaffold with limited use without considering the control of the cellular response. Therefore, the development of our TEVG holds promise as an approach to address the risk factors that affect the longtermprognosis of patients requiring VGs, improving their quality of life and reducing the financial burden on the healthcare system. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-10-27 |
dc.date.accessioned.none.fl_str_mv |
2024-01-16T16:48:21Z |
dc.date.available.none.fl_str_mv |
2027-01-13 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73271 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/73271 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73271 |
identifier_str_mv |
10.57784/1992/73271 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
257 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/d7cc0f85-2364-484a-b149-35d615b32758/download https://repositorio.uniandes.edu.co/bitstreams/061c356a-ed5d-4dd0-965b-e2bd21effe45/download https://repositorio.uniandes.edu.co/bitstreams/839724ac-a0a0-421b-a156-21c07a7fbb32/download https://repositorio.uniandes.edu.co/bitstreams/bdda184d-d5d1-4598-97a3-9c8d0e7ba690/download https://repositorio.uniandes.edu.co/bitstreams/0a42c8a8-cc20-49f9-9392-1157be4be92f/download https://repositorio.uniandes.edu.co/bitstreams/03697a7e-7425-476e-a1a9-49430ac363a0/download https://repositorio.uniandes.edu.co/bitstreams/80f49ae8-0e17-478b-ab6b-99f067243a1a/download |
bitstream.checksum.fl_str_mv |
065728ec68529d4f2180b92ed592bc94 f214f607e1acb04723f879325324d5f5 ae9e573a68e7f92501b6913cc846c39f 823552c7663207bf6a7943015eca33e8 7087f19b0a3ee3fa6ffce42e2dfe56fb e654ea76448cb2a857d8f8306feb79bd d9e34a3dc95641212ef1be68ed680e48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133894251610112 |
spelling |
Briceño Triana, Juan CarlosCruz Jiménez, Juan CarlosRodríguez Soto, María AlejandraWagner, William R.Sandoval, Nestor FernandoCruz Jiménez, Juan CarlosFacultad de Ingeniería2024-01-16T16:48:21Z2027-01-132023-10-27https://hdl.handle.net/1992/7327110.57784/1992/73271instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Vascular grafts (VGs) are highly demanded medical devices that replace the function of a blood vessel. Current alternatives use non-degradable materials that elicit a foreign body response, leading to thrombosis and compromising blood flow. As an alternative, Tissue Engineered Vascular Grafts (TEVGs) aim to approach the biological response of native vessels through biodegradability and regenerative potential. Despite the advancements in the development of TEVGs, there are high rates of failure in pre-clinical models, few have entered clinical trials and just 2 are currently on the market. This situation highlights a lack of knowledge in the rational design of TEVGs, which requires a detailed understanding of the mechanisms behind the marked and counterproductive cellular response to the biomaterial surface under physiological flow conditions that led to the failure of current strategies. Tissue regeneration in general and in scaffolds still holds a conundrum due to the complex interplay in the regulation of inflammatory processes affected by the concentration of bioactive molecules, the macro and microstructure of the extracellular matrix, as well as its mechanical properties. For that reason, we decided to take a step back to look at the bigger picture and propose a methodologic pathway to promote advancements in TEVGs going from problem identification to innovative solutions. To this end, we have first performed an extended series of studies and research aiming to identify the current trends in TEVGs and later, the understanding of the mechanisms of cellular interaction with the TEVGs and how it modulates the arterial wall regeneration process. We then transformed this information into design parameters that we could use to improve the overall performance of an ideal TEVG. Finally, we have proposed a final TEVG prototype, our approach, measuring 11 cm in length, 3.0 mm in diameter and 1 mm in thickness, exhibits mechanical properties comparable to native arteries and demonstrates high biocompatibility and hemocompatibility, along with low thrombogenicity rates. And most importantly, it shows promising results to induce and sustain endothelialization with immunomodulatory potential. This study would be the first to report the sequential cascade of processes from inflammation to migration and maturation of vascular wall cells under physiological conditions into the regeneration process of TEVGs and how to overcome the current limitations. Main Objective: Rational engineering of a readily available TEVG that considers the macro and microstructural features of a native artery combined with bioactive molecules inclusion to improve tissue regeneration reducing the need for surgical re-interventions as a result of patency loss and consequent graft failure. Impact: Synthetic VGs are inefficient alternatives in multiple conditions, with 50% losing permeability at 5 years, and requiring costly reinterventions. Despite research on TEVGs, only a few developments have reached the market as a resorbable scaffold with limited use without considering the control of the cellular response. Therefore, the development of our TEVG holds promise as an approach to address the risk factors that affect the longtermprognosis of patients requiring VGs, improving their quality of life and reducing the financial burden on the healthcare system.Minciencias Contrato RC #819-2017 código 277877758172 con el proyecto, HemodialySIS: Nuevos injertos vasculares regenerativos como acceso vascular para hemodiálisis obtenidos mediante modificación de superficie Minciencias Contrato RC # 635-2021 código 1544101252100 con el proyecto, Multigraft-Bac: Injerto vascular bacteriostático/bactericida y regenerativo para la reconstrucción de extremidades y el tratamiento de infección de aneurismas micóticos Departamento de Ingeniería Biomédica, Universidad de los AndesDoctor en IngenieríaDoctoradoDinámica CardiovascularI+D+i en ingenieríaIngeniería Biomédica257 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaRational design and additive manufacture of regenerative vascular grafts: Understanding the interaction between blood cells - surfaceTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDTissue Engineered Vascular GraftsRegenerative medicineRegenerationInflammationThrombogenesisFailureSuccessPathwaysIngenieríainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2201629216PublicationORIGINALRational design and additive manufacture of regenerative vascular grafts.pdfRational design and additive manufacture of regenerative vascular grafts.pdfRestricción de acceso hasta el año 2027. El documento cuenta con información confidencial del que se esperan publicaciones y está en proceso de patente.application/pdf9976233https://repositorio.uniandes.edu.co/bitstreams/d7cc0f85-2364-484a-b149-35d615b32758/download065728ec68529d4f2180b92ed592bc94MD51autorizacion tesis (1).pdfautorizacion tesis (1).pdfHIDEapplication/pdf358219https://repositorio.uniandes.edu.co/bitstreams/061c356a-ed5d-4dd0-965b-e2bd21effe45/downloadf214f607e1acb04723f879325324d5f5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/839724ac-a0a0-421b-a156-21c07a7fbb32/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTRational design and additive manufacture of regenerative vascular grafts.pdf.txtRational design and additive manufacture of regenerative vascular grafts.pdf.txtExtracted texttext/plain102490https://repositorio.uniandes.edu.co/bitstreams/bdda184d-d5d1-4598-97a3-9c8d0e7ba690/download823552c7663207bf6a7943015eca33e8MD54autorizacion tesis (1).pdf.txtautorizacion tesis (1).pdf.txtExtracted texttext/plain2144https://repositorio.uniandes.edu.co/bitstreams/0a42c8a8-cc20-49f9-9392-1157be4be92f/download7087f19b0a3ee3fa6ffce42e2dfe56fbMD56THUMBNAILRational design and additive manufacture of regenerative vascular grafts.pdf.jpgRational design and additive manufacture of regenerative vascular grafts.pdf.jpgGenerated Thumbnailimage/jpeg7989https://repositorio.uniandes.edu.co/bitstreams/03697a7e-7425-476e-a1a9-49430ac363a0/downloade654ea76448cb2a857d8f8306feb79bdMD55autorizacion tesis (1).pdf.jpgautorizacion tesis (1).pdf.jpgGenerated Thumbnailimage/jpeg11260https://repositorio.uniandes.edu.co/bitstreams/80f49ae8-0e17-478b-ab6b-99f067243a1a/downloadd9e34a3dc95641212ef1be68ed680e48MD571992/73271oai:repositorio.uniandes.edu.co:1992/732712024-08-26 15:21:59.72embargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |