Computational framework for solving the meal delivery routing problem
The Meal Delivery Routing Problem (MDRP) is a problem in which an online restaurant aggregator receives orders from diners and matches couriers that perform the pick-up and dropoff of these requests. These operations have become more popular over the past few years and on-demand delivery has gained...
- Autores:
-
Quintero Rojas, Sebastián
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50995
- Acceso en línea:
- http://hdl.handle.net/1992/50995
- Palabra clave:
- Distribución física de alimentos
Tiempos y movimientos
Distribución logística
Investigación operacional
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_338b6aff64de9745269e3321bb83a21b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50995 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Computational framework for solving the meal delivery routing problem |
title |
Computational framework for solving the meal delivery routing problem |
spellingShingle |
Computational framework for solving the meal delivery routing problem Distribución física de alimentos Tiempos y movimientos Distribución logística Investigación operacional Ingeniería |
title_short |
Computational framework for solving the meal delivery routing problem |
title_full |
Computational framework for solving the meal delivery routing problem |
title_fullStr |
Computational framework for solving the meal delivery routing problem |
title_full_unstemmed |
Computational framework for solving the meal delivery routing problem |
title_sort |
Computational framework for solving the meal delivery routing problem |
dc.creator.fl_str_mv |
Quintero Rojas, Sebastián |
dc.contributor.advisor.none.fl_str_mv |
O'Neil, Ryan J. Gómez Castro, Camilo Hernando |
dc.contributor.author.none.fl_str_mv |
Quintero Rojas, Sebastián |
dc.contributor.jury.none.fl_str_mv |
Alvarez Martínez, David |
dc.subject.armarc.none.fl_str_mv |
Distribución física de alimentos Tiempos y movimientos Distribución logística Investigación operacional |
topic |
Distribución física de alimentos Tiempos y movimientos Distribución logística Investigación operacional Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
The Meal Delivery Routing Problem (MDRP) is a problem in which an online restaurant aggregator receives orders from diners and matches couriers that perform the pick-up and dropoff of these requests. These operations have become more popular over the past few years and on-demand delivery has gained special traction during the COVID-19 pandemic. There are many challenges involved in this problem: the order arrival stream is highly dynamic and uncertain, the fleet works under the gig economy model in which they have the freedom to reject requests and log on and off as they please, most orders are expected to be delivered in under 40 minutes and there are stakeholders with conflictive interests. In this research a computational framework is presented to handle an environment where solutions to the MDRP may be tested. At the core, there is a discrete events simulator which accurately represents the components of a meal delivery operation. The simulator has blocks where policies are embedded, that represent how actors make decisions or take actions. The proposed framework is modular, hence specific blocks may be interchanged so that different policies can be compared or new ones introduced. The computational framework is designed to transparently load instances and inputs, execute the simulation and output performance metrics. In addition, the MDRP is given new definitions. Lastly, real-life instances are provided for testing. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:05:48Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:05:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50995 |
dc.identifier.pdf.none.fl_str_mv |
22663.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50995 |
identifier_str_mv |
22663.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
43 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Ingeniería Industrial |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Industrial |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/f352139d-4f74-4b3c-9a6a-39c887ff65d4/download https://repositorio.uniandes.edu.co/bitstreams/92917b26-2d74-49a2-8e1a-574f7d2371fa/download https://repositorio.uniandes.edu.co/bitstreams/9d8d8ece-8020-43a4-a6ad-7211e3b96c1f/download |
bitstream.checksum.fl_str_mv |
5da151542d113ed2c9ab5cce14699146 4a7afe47e479bec373df2f996e604b4c 20a8544a74d7a17d2f1afaaa83555a3e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133924738957312 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2O'Neil, Ryan J.e0f4f86e-345d-471e-ae06-8f895481dfdf500Gómez Castro, Camilo Hernando022ffb2f-20e5-4612-98ee-070a69f51e20400Quintero Rojas, Sebastiánfacf9385-601f-413f-8202-ac3acd700755500Alvarez Martínez, David2021-08-10T18:05:48Z2021-08-10T18:05:48Z2020http://hdl.handle.net/1992/5099522663.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Meal Delivery Routing Problem (MDRP) is a problem in which an online restaurant aggregator receives orders from diners and matches couriers that perform the pick-up and dropoff of these requests. These operations have become more popular over the past few years and on-demand delivery has gained special traction during the COVID-19 pandemic. There are many challenges involved in this problem: the order arrival stream is highly dynamic and uncertain, the fleet works under the gig economy model in which they have the freedom to reject requests and log on and off as they please, most orders are expected to be delivered in under 40 minutes and there are stakeholders with conflictive interests. In this research a computational framework is presented to handle an environment where solutions to the MDRP may be tested. At the core, there is a discrete events simulator which accurately represents the components of a meal delivery operation. The simulator has blocks where policies are embedded, that represent how actors make decisions or take actions. The proposed framework is modular, hence specific blocks may be interchanged so that different policies can be compared or new ones introduced. The computational framework is designed to transparently load instances and inputs, execute the simulation and output performance metrics. In addition, the MDRP is given new definitions. Lastly, real-life instances are provided for testing.El problema de ruteo de comidas a domicilio (MDRP por sus siglas en inglés) es un problema en el que un despachador en línea agrega restaurantes y recibe órdenes de comensales, asignando domiciliarios quienes realizan la recogida y entrega de estos pedidos. Estas operaciones se han vuelto muy populares en los últimos años y la entrega a domicilio ha ganado especial tracción durante la pandemia del COVID-19. Hay múltiples retos en este problema: el arribo de órdenes es altamente dinámico e incierto, la flota trabaja bajo el modelo de la gig economy, en el cual tienen la facultad de rechazar pedidos y conectarse a cualquier hora deseada, la mayoría de las órdenes se espera sean entregadas antes de 40 minutos y hay actores con conflicto de intereses. En esta investigación, se presenta un marco computacional donde se pueden probar soluciones para el MDRP. En el núcleo se encuentra un simulador de eventos discretos que representa los elementos de una operación donde se entregan comidas. El simulador tiene bloques donde hay políticas embebidas, las cuales representan la forma en la que los actores toman decisiones o realizan acciones. El marco propuesto es modular, de forma que bloques específicos se pueden comparar o incluso introducir unos nuevos. El marco está diseñado para cargar instancias y entradas, ejecutar la simulación y almacenar métricas de desempeño. Adicionalmente, se dan nuevas definiciones al MDRP. Por último, se entregan instancias reales para realizar pruebas.Magíster en Ingeniería IndustrialMaestría43 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería IndustrialComputational framework for solving the meal delivery routing problemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMDistribución física de alimentosTiempos y movimientosDistribución logísticaInvestigación operacionalIngeniería201125174PublicationTHUMBNAIL22663.pdf.jpg22663.pdf.jpgIM Thumbnailimage/jpeg18459https://repositorio.uniandes.edu.co/bitstreams/f352139d-4f74-4b3c-9a6a-39c887ff65d4/download5da151542d113ed2c9ab5cce14699146MD55ORIGINAL22663.pdfapplication/pdf2382480https://repositorio.uniandes.edu.co/bitstreams/92917b26-2d74-49a2-8e1a-574f7d2371fa/download4a7afe47e479bec373df2f996e604b4cMD51TEXT22663.pdf.txt22663.pdf.txtExtracted texttext/plain109425https://repositorio.uniandes.edu.co/bitstreams/9d8d8ece-8020-43a4-a6ad-7211e3b96c1f/download20a8544a74d7a17d2f1afaaa83555a3eMD541992/50995oai:repositorio.uniandes.edu.co:1992/509952023-10-10 17:13:15.521https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |