Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment

In order to understand the geochemistry behind the depositional conditions and postdepositional processes of the Cretaceous Paja Formation sediments, it was necessary to measure the major elements and trace elements. This was done in order to analyze Fe/Al ratios in early-diagenetic concretions whos...

Full description

Autores:
Forero Fuentes, Valentina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64029
Acceso en línea:
http://hdl.handle.net/1992/64029
Palabra clave:
Paja Formation
Cretaceous
Early-diagenetic concretions
Major and trace element analysis
Depositional environment
Redox proxies
Post-depositional alteration
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_31f43fae1a7d4c2fc6916b589fbf70f1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64029
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
title Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
spellingShingle Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
Paja Formation
Cretaceous
Early-diagenetic concretions
Major and trace element analysis
Depositional environment
Redox proxies
Post-depositional alteration
Geociencias
title_short Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
title_full Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
title_fullStr Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
title_full_unstemmed Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
title_sort Geochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environment
dc.creator.fl_str_mv Forero Fuentes, Valentina
dc.contributor.advisor.none.fl_str_mv Noè, Leslie Francis
Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Forero Fuentes, Valentina
dc.contributor.jury.none.fl_str_mv Rodríguez Vargas, Andrés Ignacio
dc.subject.keyword.none.fl_str_mv Paja Formation
Cretaceous
Early-diagenetic concretions
Major and trace element analysis
Depositional environment
Redox proxies
Post-depositional alteration
topic Paja Formation
Cretaceous
Early-diagenetic concretions
Major and trace element analysis
Depositional environment
Redox proxies
Post-depositional alteration
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description In order to understand the geochemistry behind the depositional conditions and postdepositional processes of the Cretaceous Paja Formation sediments, it was necessary to measure the major elements and trace elements. This was done in order to analyze Fe/Al ratios in early-diagenetic concretions whose high content of Fe indicate a reducing (anoxic) depositional environment. Detrital input was also calculated through major elements, where a small percentage of detrital input was found in contrast of the black shales from the northern part of the Formation and the upper continental crust, suggesting that the samples analyzed in this project might be the deepest known located samples of the Paja Formation. Trace elements were useful for the calculation of redox proxies (Ni, Mo, Zn, V), which enrichment of trace elements in comparison to average shale, post-Archean average Australian shale and upper continental crust and their correlation with total organic carbon (TOC) also support an euxinic environment. In the same way, by the use of in-situ analyses, it could be determined presence of cubic and framboidal pyrite, in which the last one need specific conditions of formation where a high sulfur content is necessary. Considering the fact that TOC:TS ratios correspond to an oxic environment and not anoxic as expected, it is suggested that those concentrations could have been altered by processes like oxidation of late-diagenetic organic matter, this is supported by the majority of pyrite being oxidized, lowering its total sulfur concentrations and leaving a beehive texture on the remaining goethite and presence of minerals like gypsum that could originate from pyrite oxidation. In addition, there is the presence of late-diagenetic organic matter only in the sediments within the concretions, that confirms the idea of the concretions being the only reliable early-diagenetic samples preserved.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-02
dc.date.accessioned.none.fl_str_mv 2023-01-20T19:26:16Z
dc.date.available.none.fl_str_mv 2023-01-20T19:26:16Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64029
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64029
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Alvarez, N. C., & Roser, B. P. 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4), 271-289.
Anthony, J., Bideaux, R., Bladh, K., and Nichols, M. 1973. Handbook of Mineralogy, Mineralogical Society of America, Chantilly, V1 159-163
Bádenas, B. & Aurell, M. 2008. Kimmeridgian epeiric sea deposits ofnortheastern Spain: Sedimentary dynamics of a storm-dominated carbonate ramp. In: Pratt, B.R. & Holmden, C. (editors), Dynamics of epeiric seas. Geological Association of Canada,Special Paper 48, p. 55-71. Toronto.
Brolly, C., Parnell, J., & Bowden, S. 2016. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planetary and space Science, 121, 53-59.
Brouwer, P. 2006. Theory of XRF. Almelo, Netherlands: PANalytical BV (1-62).
Brumsack, H.J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol. Rundsch. 78, 851-882.
Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., Lopez, C., Sánchez, N., Horton, B., Stockli, D. & Duddy, I. 2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377(1), 315-342.
Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar.Geol. 113, 67-88.
Camp, W. K. 2016. Strategies for identifying organic matter types in SEM. In SEPM-AAPG Hedberg Research Mudstone Diagenesis Conference (Vol. 16, p. 19).
Chang, J., Li, Y., & Lu, H. 2022. The Morphological Characteristics of Authigenic Pyrite Formed in Marine Sediments. Journal of Marine Science and Engineering, 10(10), 1533.
Chilingar, G. V. 1960. Notes on classification of carbonate rocks on basis of chemical composition. Journal of Sedimentary Research, 30(1), 157-158.
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1-4), 1-37.
Daskaladis, K.D., Helz, G.R., 1993. The solubility of sphalerite insulfidic solutions at 25 °C and 1 atm pressure. Geochim.Cosmochim. Acta 57, 4923-4931.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. Mem. Am. Assoc. Pet. Geol.,1: 108-121.
ELTRA. 2022. Analizador de Carbono/Azufre. Funcionamiento y características. ELTRA Elemental Analyzers. https://www.eltra.es/es/productos/analizadores-de-chs/cs-580a/funcionamiento-caracteristicas/
Etayo-Serna, F. 1968a. Sinopsis estratigráfica de la región de Villa de Leyva y zonas próximas. Boletín de Geología, 21: 19-32.
Etayo-Serna, F. 1968b. El sistema Cretácico en la región de Villa de Leyva y zonas próximas. Geología Colombiana, 5: 5-74.
Etayo-Serna, F. 1979. Zonation of the Cretaceous of central Colombia by ammonites. Publicaciones Geológicas Especiales del Ingeominas 2, 186 p. Bogotá
Figueiredo Filho, D. B., Silva Júnior, J. A., & Rocha, E. C. 2011. What is R2 all about?. Leviathan (São Paulo), (3), 60-68.
Fleurance, S., Cuney, M., Malartre, F., & Reyx, J. 2013. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219.
Folk, R.L., 1962. Spectral subdivision of limestone types. Me Folk, R.L., 1962. Spectral subdivision of limestone types. Mem. Am. Assoc. Pet. Geol., 1: 62-84.
Hawkesworth, C. J., & Kemp, A. I. S. 2006. Evolution of the continental crust. Nature, 443(7113), 811-817.
Huber, K. & Wiedmann, J. 1986. Sobre el límite Jurásico-Cretácico en los alrededores de Villa de Leiva, departamento de Boyacá, Colombia. Geología Colombiana, 15: 81-92.
Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritisation of trace metals innoxic marine sediments. Geochim. Cosmochim. Acta 56, 2681-2702.
Huggins F. E., Huffman G. P., Kosmack D. A. and Lowenhaupt D. E. 1980 Mosshauer detection of goethite ([alfa]-FeOOH) in coal and its potential as an indicator of coal oxidation. Internat. J. Coal Geol. 1, 75-81.
Kaplan I. R., Emery K. O., and Rittenberg S. C. 1963 The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27, 297-331
Koralay, D. B., & Sari, A. 2013. Redox conditions and metal-organic carbon relations of Eocene bituminous shales (Veliler/Mengen-Bolu/Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(17), 1597-1607.
Liu, C., Hai-Fei, Z., & Wang, D. 2017. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature. High Pressure Research. 37. 1-13.
Luque, J., Cortés, D., Rodriguez-Abaunza, A., Cárdenas, D., & de Dios Parra, J. 2020. Orithopsid crabs from the Lower Cretaceous Paja Formation in Boyacá (Colombia), and the earliest record of parasitic isopod traces in Raninoida. Cretaceous Research, 116, 104602.
Luther, G. W., Giblin, A., Howarth, R. W., & Ryans, R. A. 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 46(12), 2665-2669.
Lyons, T. W., & Severmann, S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23), 5698-5722.
Massaad, M. 1974. Framboidal pyrite in concretions. Mineralium Deposita, 9(1), 87-89.
Maxwell, E. E., Dick, D., Padilla, S., & Parra, M. L. 2016. A new ophthalmosaurid ichthyosaur from the Early Cretaceous of Colombia. Papers in Palaeontology, 2(1), 59-70.
McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. (G3) 2 (paper # 2000GC000109).
Montoya, D. 2019. "Formación La Paja: descripción de la sección tipo. Influencia de los tapices microbiales en su génesis". En Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena, dirección científica y edición de Fernando Etayo-Serna. Compilación de los Estudios Geológicos Oficiales en Colombia vol. XXIII. Bogotá: Servicio Geológico Colombiano.
Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735-1750.
Morse, J.W., Luther III, G.W., 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63, 3373-3378.
Noè, L.F. & Gómez-Pérez, M. 2020. Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla-Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 43 p. Bogotá.
Patarroyo-Camargo, G.D., Patarroyo, P. & Sánchez-Quiñonez, C.A. 2009. Foraminíferos bentónicos en el Barremiano inferior de la Formación Paja (Boyacá-Santander, Colombia): Evidencias preliminares de un posible bioevento. Geología Colombiana, 34, pp. 111-122, 5 Figs., Bogotá.
Piper, D.Z., Perkins, R.B., 2004. A modern vs.. Permian black shale - the hydrography, primary productivity, and water-column chemistry of deposition. Chem. Geol. 206, 177-197.
Pérez, R. 2011. Fundamentos de Espectroscopía Raman. En Procesado y Optimización de Espectros Raman mediante Técnicas de Lógica Difusa: Aplicación a la identificación de Materiales Pictóricos (Tesis doctoral) (pp. 10-15). Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions,Barcelona.
Prothero D. R. & Schwab, F. 1996. Sedimentary Geology. An Introduction to Sedimentary Rocks and Stratigraphy pp. 575 New York: W. H. Freeman
Reolid, M., Molina, J. M., Nieto, L. M., & Rodríguez-Tovar, F. J. 2018. The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin. Springer International Publishing (3) 64-73.
Rhoads, D. C., & Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4(4), 413-428.
Ríos-Reyes, C. A., Reyes-Mendoza, G. A., Henao-Martínez, J. A., Williams, C., & Dyer, A. 2021. First Report on the Geologic Occurrence of Natural Na-A Zeolite and Associated Minerals in Cretaceous Mudstones of the Paja Formation of Vélez (Santander), Colombia. Crystals, 11(2), 218.
Rodríguez-Tovar FJ & Reolid M , 2013 Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697-712
Royero, M. J., & Clavijo, J. 2001. Memoria explicativa del mapa geológico generalizado del departamento de Santander, escala 1:400.000. Ingeominas, 256.
Rowe, H., Ruppel, S., Rimmer, S., & Loucks, R. 2009. Core-based chemostratigraphy of the Barnett Shale, Permian Basin, Texas. The Gulf Coast Association of Geological Societies
Sageman, B. B., Wignall, P. B., & Kauffman, E. G. 1991. 5.3 Biofacies Models for 0xygen-Deficient Facies in Epicontinental Seas: Tool for Paleoenvironmental Analysis.
Shaw, D.M., Cramer, J.J., Higgines, M.D. and Truscott, M.G., 1986. Composition of the Canadian Precambrian shield and the continental crust of the earth. Geol. Soc. London, Spec. Publ. No. 24, pp. 275-282.
Soliman, M & El Goresy, A. 2012. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite. Geochimica et Cosmochimica Acta. 90. 195-220.
Sun, M. Y., & Wakeham, S. G. 1994. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin. Geochimica et Cosmochimica Acta, 58(16), 3395-3406.
Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813.
Taylor, S & McLennan, S 1985. The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publications, 46, 838.
Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical geology, 232(1-2), 12-32.
Udden, J.A., 1914, Mechanical composition of clastic sediments: Geological Society of America, Bulletin, v. 25, p. 655-744.
Ul-Hamid, A. 2018. A beginners' guide to scanning electron microscopy (Vol. 1, p. 402). Cham, Switzerland. Springer International Publishing.
Vandenbroucke, M., & Largeau, C. 2007. Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719-833.
Wedepohl, K.H., 1971. Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K., Urey, H.C. (Eds.), Physics and Chemistry of the Earth. Pergamon, Oxford, pp. 305-333.
Wedepohl, K.H., 1991. The composition of the upper Earth's crust and the natural cycles of selected metals. In: Merian, E. (Ed.), Metals and their Compounds in the Environment. VCH-Verlagsgesellschaft, Weinheim, pp. 3-17
Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen-deficiency in ancient mudrocks. American. Journal of Science. 298, 537 - 552.
Wilkin, R. T., Barnes, H. L., & Brantley, S. L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et cosmochimica acta, 60(20), 3897-3912
Wooldridge, J. 2009. Introductory Econometrics: A Modern Approach. Boston, MA: South-Western College Publishing
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 43 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/43b1c362-21b6-42b0-b9a5-336ebe20b7cb/download
https://repositorio.uniandes.edu.co/bitstreams/322b96b9-7589-4d4f-b9d1-389e820a6f7e/download
https://repositorio.uniandes.edu.co/bitstreams/f5a833fd-1d5a-4f9a-ac4d-1745fb46a7e9/download
https://repositorio.uniandes.edu.co/bitstreams/9edefb27-84dc-405a-bc69-3ea70a06c195/download
https://repositorio.uniandes.edu.co/bitstreams/d80da135-f9c2-4f3e-b1c6-d3ae7e981ba3/download
https://repositorio.uniandes.edu.co/bitstreams/1c8588a0-f077-4b95-be08-ef537b8711ec/download
https://repositorio.uniandes.edu.co/bitstreams/dfcd52b5-b11b-4a5d-b2ef-24090810d5a1/download
bitstream.checksum.fl_str_mv 1f0c9022df6e1d6354f6d10ba79f5650
68b329da9893e34099c7d8ad5cb9c940
5aa5c691a1ffe97abd12c2966efcb8d6
9ddbd238e4c495d04a53f51654261d1a
859a6b0b54bbcb947d400629a81af190
5c5347454a4d3a95b4588e22c1345fb5
4f5a57abb4a6e0d931abd559b1917272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133935206891520
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Noè, Leslie Francis8fa98c25-626f-485b-9740-9dbf2d72a52b600Eickmann, Benjamin4297b9f1-cabb-4ae1-a96a-9c548e57eb89600Forero Fuentes, Valentina67af85d2-2d3c-4169-adba-5b3f80172345600Rodríguez Vargas, Andrés Ignacio2023-01-20T19:26:16Z2023-01-20T19:26:16Z2022-12-02http://hdl.handle.net/1992/64029instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In order to understand the geochemistry behind the depositional conditions and postdepositional processes of the Cretaceous Paja Formation sediments, it was necessary to measure the major elements and trace elements. This was done in order to analyze Fe/Al ratios in early-diagenetic concretions whose high content of Fe indicate a reducing (anoxic) depositional environment. Detrital input was also calculated through major elements, where a small percentage of detrital input was found in contrast of the black shales from the northern part of the Formation and the upper continental crust, suggesting that the samples analyzed in this project might be the deepest known located samples of the Paja Formation. Trace elements were useful for the calculation of redox proxies (Ni, Mo, Zn, V), which enrichment of trace elements in comparison to average shale, post-Archean average Australian shale and upper continental crust and their correlation with total organic carbon (TOC) also support an euxinic environment. In the same way, by the use of in-situ analyses, it could be determined presence of cubic and framboidal pyrite, in which the last one need specific conditions of formation where a high sulfur content is necessary. Considering the fact that TOC:TS ratios correspond to an oxic environment and not anoxic as expected, it is suggested that those concentrations could have been altered by processes like oxidation of late-diagenetic organic matter, this is supported by the majority of pyrite being oxidized, lowering its total sulfur concentrations and leaving a beehive texture on the remaining goethite and presence of minerals like gypsum that could originate from pyrite oxidation. In addition, there is the presence of late-diagenetic organic matter only in the sediments within the concretions, that confirms the idea of the concretions being the only reliable early-diagenetic samples preserved.GeocientíficoPregradoGeoquímica43 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasGeochemical investigations of early-diagenetic calcareous concretions from the Cretaceous Paja Formation (Colombia): understanding the depositional environmentTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPaja FormationCretaceousEarly-diagenetic concretionsMajor and trace element analysisDepositional environmentRedox proxiesPost-depositional alterationGeocienciasAlvarez, N. C., & Roser, B. P. 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4), 271-289.Anthony, J., Bideaux, R., Bladh, K., and Nichols, M. 1973. Handbook of Mineralogy, Mineralogical Society of America, Chantilly, V1 159-163Bádenas, B. & Aurell, M. 2008. Kimmeridgian epeiric sea deposits ofnortheastern Spain: Sedimentary dynamics of a storm-dominated carbonate ramp. In: Pratt, B.R. & Holmden, C. (editors), Dynamics of epeiric seas. Geological Association of Canada,Special Paper 48, p. 55-71. Toronto.Brolly, C., Parnell, J., & Bowden, S. 2016. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planetary and space Science, 121, 53-59.Brouwer, P. 2006. Theory of XRF. Almelo, Netherlands: PANalytical BV (1-62).Brumsack, H.J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol. Rundsch. 78, 851-882.Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., Lopez, C., Sánchez, N., Horton, B., Stockli, D. & Duddy, I. 2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377(1), 315-342.Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar.Geol. 113, 67-88.Camp, W. K. 2016. Strategies for identifying organic matter types in SEM. In SEPM-AAPG Hedberg Research Mudstone Diagenesis Conference (Vol. 16, p. 19).Chang, J., Li, Y., & Lu, H. 2022. The Morphological Characteristics of Authigenic Pyrite Formed in Marine Sediments. Journal of Marine Science and Engineering, 10(10), 1533.Chilingar, G. V. 1960. Notes on classification of carbonate rocks on basis of chemical composition. Journal of Sedimentary Research, 30(1), 157-158.Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1-4), 1-37.Daskaladis, K.D., Helz, G.R., 1993. The solubility of sphalerite insulfidic solutions at 25 °C and 1 atm pressure. Geochim.Cosmochim. Acta 57, 4923-4931.Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. Mem. Am. Assoc. Pet. Geol.,1: 108-121.ELTRA. 2022. Analizador de Carbono/Azufre. Funcionamiento y características. ELTRA Elemental Analyzers. https://www.eltra.es/es/productos/analizadores-de-chs/cs-580a/funcionamiento-caracteristicas/Etayo-Serna, F. 1968a. Sinopsis estratigráfica de la región de Villa de Leyva y zonas próximas. Boletín de Geología, 21: 19-32.Etayo-Serna, F. 1968b. El sistema Cretácico en la región de Villa de Leyva y zonas próximas. Geología Colombiana, 5: 5-74.Etayo-Serna, F. 1979. Zonation of the Cretaceous of central Colombia by ammonites. Publicaciones Geológicas Especiales del Ingeominas 2, 186 p. BogotáFigueiredo Filho, D. B., Silva Júnior, J. A., & Rocha, E. C. 2011. What is R2 all about?. Leviathan (São Paulo), (3), 60-68.Fleurance, S., Cuney, M., Malartre, F., & Reyx, J. 2013. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219.Folk, R.L., 1962. Spectral subdivision of limestone types. Me Folk, R.L., 1962. Spectral subdivision of limestone types. Mem. Am. Assoc. Pet. Geol., 1: 62-84.Hawkesworth, C. J., & Kemp, A. I. S. 2006. Evolution of the continental crust. Nature, 443(7113), 811-817.Huber, K. & Wiedmann, J. 1986. Sobre el límite Jurásico-Cretácico en los alrededores de Villa de Leiva, departamento de Boyacá, Colombia. Geología Colombiana, 15: 81-92.Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritisation of trace metals innoxic marine sediments. Geochim. Cosmochim. Acta 56, 2681-2702.Huggins F. E., Huffman G. P., Kosmack D. A. and Lowenhaupt D. E. 1980 Mosshauer detection of goethite ([alfa]-FeOOH) in coal and its potential as an indicator of coal oxidation. Internat. J. Coal Geol. 1, 75-81.Kaplan I. R., Emery K. O., and Rittenberg S. C. 1963 The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27, 297-331Koralay, D. B., & Sari, A. 2013. Redox conditions and metal-organic carbon relations of Eocene bituminous shales (Veliler/Mengen-Bolu/Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(17), 1597-1607.Liu, C., Hai-Fei, Z., & Wang, D. 2017. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature. High Pressure Research. 37. 1-13.Luque, J., Cortés, D., Rodriguez-Abaunza, A., Cárdenas, D., & de Dios Parra, J. 2020. Orithopsid crabs from the Lower Cretaceous Paja Formation in Boyacá (Colombia), and the earliest record of parasitic isopod traces in Raninoida. Cretaceous Research, 116, 104602.Luther, G. W., Giblin, A., Howarth, R. W., & Ryans, R. A. 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 46(12), 2665-2669.Lyons, T. W., & Severmann, S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23), 5698-5722.Massaad, M. 1974. Framboidal pyrite in concretions. Mineralium Deposita, 9(1), 87-89.Maxwell, E. E., Dick, D., Padilla, S., & Parra, M. L. 2016. A new ophthalmosaurid ichthyosaur from the Early Cretaceous of Colombia. Papers in Palaeontology, 2(1), 59-70.McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. (G3) 2 (paper # 2000GC000109).Montoya, D. 2019. "Formación La Paja: descripción de la sección tipo. Influencia de los tapices microbiales en su génesis". En Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena, dirección científica y edición de Fernando Etayo-Serna. Compilación de los Estudios Geológicos Oficiales en Colombia vol. XXIII. Bogotá: Servicio Geológico Colombiano.Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735-1750.Morse, J.W., Luther III, G.W., 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63, 3373-3378.Noè, L.F. & Gómez-Pérez, M. 2020. Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla-Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 43 p. Bogotá.Patarroyo-Camargo, G.D., Patarroyo, P. & Sánchez-Quiñonez, C.A. 2009. Foraminíferos bentónicos en el Barremiano inferior de la Formación Paja (Boyacá-Santander, Colombia): Evidencias preliminares de un posible bioevento. Geología Colombiana, 34, pp. 111-122, 5 Figs., Bogotá.Piper, D.Z., Perkins, R.B., 2004. A modern vs.. Permian black shale - the hydrography, primary productivity, and water-column chemistry of deposition. Chem. Geol. 206, 177-197.Pérez, R. 2011. Fundamentos de Espectroscopía Raman. En Procesado y Optimización de Espectros Raman mediante Técnicas de Lógica Difusa: Aplicación a la identificación de Materiales Pictóricos (Tesis doctoral) (pp. 10-15). Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions,Barcelona.Prothero D. R. & Schwab, F. 1996. Sedimentary Geology. An Introduction to Sedimentary Rocks and Stratigraphy pp. 575 New York: W. H. FreemanReolid, M., Molina, J. M., Nieto, L. M., & Rodríguez-Tovar, F. J. 2018. The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin. Springer International Publishing (3) 64-73.Rhoads, D. C., & Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4(4), 413-428.Ríos-Reyes, C. A., Reyes-Mendoza, G. A., Henao-Martínez, J. A., Williams, C., & Dyer, A. 2021. First Report on the Geologic Occurrence of Natural Na-A Zeolite and Associated Minerals in Cretaceous Mudstones of the Paja Formation of Vélez (Santander), Colombia. Crystals, 11(2), 218.Rodríguez-Tovar FJ & Reolid M , 2013 Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697-712Royero, M. J., & Clavijo, J. 2001. Memoria explicativa del mapa geológico generalizado del departamento de Santander, escala 1:400.000. Ingeominas, 256.Rowe, H., Ruppel, S., Rimmer, S., & Loucks, R. 2009. Core-based chemostratigraphy of the Barnett Shale, Permian Basin, Texas. The Gulf Coast Association of Geological SocietiesSageman, B. B., Wignall, P. B., & Kauffman, E. G. 1991. 5.3 Biofacies Models for 0xygen-Deficient Facies in Epicontinental Seas: Tool for Paleoenvironmental Analysis.Shaw, D.M., Cramer, J.J., Higgines, M.D. and Truscott, M.G., 1986. Composition of the Canadian Precambrian shield and the continental crust of the earth. Geol. Soc. London, Spec. Publ. No. 24, pp. 275-282.Soliman, M & El Goresy, A. 2012. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite. Geochimica et Cosmochimica Acta. 90. 195-220.Sun, M. Y., & Wakeham, S. G. 1994. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin. Geochimica et Cosmochimica Acta, 58(16), 3395-3406.Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813.Taylor, S & McLennan, S 1985. The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publications, 46, 838.Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical geology, 232(1-2), 12-32.Udden, J.A., 1914, Mechanical composition of clastic sediments: Geological Society of America, Bulletin, v. 25, p. 655-744.Ul-Hamid, A. 2018. A beginners' guide to scanning electron microscopy (Vol. 1, p. 402). Cham, Switzerland. Springer International Publishing.Vandenbroucke, M., & Largeau, C. 2007. Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719-833.Wedepohl, K.H., 1971. Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K., Urey, H.C. (Eds.), Physics and Chemistry of the Earth. Pergamon, Oxford, pp. 305-333.Wedepohl, K.H., 1991. The composition of the upper Earth's crust and the natural cycles of selected metals. In: Merian, E. (Ed.), Metals and their Compounds in the Environment. VCH-Verlagsgesellschaft, Weinheim, pp. 3-17Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen-deficiency in ancient mudrocks. American. Journal of Science. 298, 537 - 552.Wilkin, R. T., Barnes, H. L., & Brantley, S. L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et cosmochimica acta, 60(20), 3897-3912Wooldridge, J. 2009. Introductory Econometrics: A Modern Approach. Boston, MA: South-Western College Publishing201729499PublicationTEXTForeroValentina.Tesis.Final.pdf.txtForeroValentina.Tesis.Final.pdf.txtExtracted texttext/plain67309https://repositorio.uniandes.edu.co/bitstreams/43b1c362-21b6-42b0-b9a5-336ebe20b7cb/download1f0c9022df6e1d6354f6d10ba79f5650MD5420230120095435405.pdf.txt20230120095435405.pdf.txtExtracted texttext/plain1https://repositorio.uniandes.edu.co/bitstreams/322b96b9-7589-4d4f-b9d1-389e820a6f7e/download68b329da9893e34099c7d8ad5cb9c940MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/f5a833fd-1d5a-4f9a-ac4d-1745fb46a7e9/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALForeroValentina.Tesis.Final.pdfForeroValentina.Tesis.Final.pdfTrabajo de grado Valentina Foreroapplication/pdf2724606https://repositorio.uniandes.edu.co/bitstreams/9edefb27-84dc-405a-bc69-3ea70a06c195/download9ddbd238e4c495d04a53f51654261d1aMD5320230120095435405.pdf20230120095435405.pdfHIDEapplication/pdf48142https://repositorio.uniandes.edu.co/bitstreams/d80da135-f9c2-4f3e-b1c6-d3ae7e981ba3/download859a6b0b54bbcb947d400629a81af190MD52THUMBNAILForeroValentina.Tesis.Final.pdf.jpgForeroValentina.Tesis.Final.pdf.jpgIM Thumbnailimage/jpeg12121https://repositorio.uniandes.edu.co/bitstreams/1c8588a0-f077-4b95-be08-ef537b8711ec/download5c5347454a4d3a95b4588e22c1345fb5MD5520230120095435405.pdf.jpg20230120095435405.pdf.jpgIM Thumbnailimage/jpeg18688https://repositorio.uniandes.edu.co/bitstreams/dfcd52b5-b11b-4a5d-b2ef-24090810d5a1/download4f5a57abb4a6e0d931abd559b1917272MD571992/64029oai:repositorio.uniandes.edu.co:1992/640292023-10-10 17:24:31.036https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==