The moduli stack of elliptic curves

By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether thi...

Full description

Autores:
Pérez Bernal, Juan Martín
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/43725
Acceso en línea:
http://hdl.handle.net/1992/43725
Palabra clave:
Superficies de Riemann - Investigaciones
Isomorfismo (Matemáticas) - Investigaciones
Espacios analíticos - Investigaciones
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_30200d37f478ce9185716ec93e365ab3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/43725
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Schaffhauser, Florent8ee887f6-cc38-42d0-af3d-ba696ba4229e500Pérez Bernal, Juan Martíneba8ebe3-54e6-4494-836f-25008902d375500Bressler, PaulBiedermann, Georg2020-09-03T14:14:49Z2020-09-03T14:14:49Z2019http://hdl.handle.net/1992/43725u830743.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether this set has an extra structure, turning it into some kind of \textit{space}. In this memoir, we focus on these questions in the genus 1 case. As a matter of fact, we shall also fix some extra data: a base point on our genus 1 curve. The moduli space we obtain by doing this is called the moduli space of elliptic curves and the goal of the thesis is to show that this space is a complex analytic space, in a sense that we will make precise along the way."Por el espacio moduli de superficies de Riemann de genero g, nos referimos al conjunto de clases de isomorfismo de estructuras complejo-analíticas sobre una superficie cerrada orientada de genero g, fijo de una vez por todas. No es claro a priori por qué este conjunto es un espacio o tiene propiedades intrínsecas. En este trabajo, nos concentramos en esta pregunta para el caso de genero 1. El objetivo del trabajo es demostrar que el espacio moduli obtenido es un espacio complejo-analítico, en un sentido que se precisara a lo largo del trabajo."--Tomado del Formato de Documento de Grado.Magíster en MatemáticasMaestría37 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaThe moduli stack of elliptic curvesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMSuperficies de Riemann - InvestigacionesIsomorfismo (Matemáticas) - InvestigacionesEspacios analíticos - InvestigacionesMatemáticasPublicationTEXTu830743.pdf.txtu830743.pdf.txtExtracted texttext/plain95154https://repositorio.uniandes.edu.co/bitstreams/ccb77d73-6f8e-411c-99f7-e75809d76d69/download42f193d1cdedc679ad4245606f3e48b7MD54ORIGINALu830743.pdfapplication/pdf664530https://repositorio.uniandes.edu.co/bitstreams/9f4a2739-0613-4062-9c1f-cc75a4185ce6/download595cd22776b8fa35d5047b50ebdd4649MD51THUMBNAILu830743.pdf.jpgu830743.pdf.jpgIM Thumbnailimage/jpeg15408https://repositorio.uniandes.edu.co/bitstreams/74de213a-5e51-49a9-afd3-5dfed2a185f9/downloadca9acc783ae2f2abcb2bed4c541d6672MD551992/43725oai:repositorio.uniandes.edu.co:1992/437252023-10-10 16:47:09.136http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv The moduli stack of elliptic curves
title The moduli stack of elliptic curves
spellingShingle The moduli stack of elliptic curves
Superficies de Riemann - Investigaciones
Isomorfismo (Matemáticas) - Investigaciones
Espacios analíticos - Investigaciones
Matemáticas
title_short The moduli stack of elliptic curves
title_full The moduli stack of elliptic curves
title_fullStr The moduli stack of elliptic curves
title_full_unstemmed The moduli stack of elliptic curves
title_sort The moduli stack of elliptic curves
dc.creator.fl_str_mv Pérez Bernal, Juan Martín
dc.contributor.advisor.none.fl_str_mv Schaffhauser, Florent
dc.contributor.author.none.fl_str_mv Pérez Bernal, Juan Martín
dc.contributor.jury.none.fl_str_mv Bressler, Paul
Biedermann, Georg
dc.subject.armarc.es_CO.fl_str_mv Superficies de Riemann - Investigaciones
Isomorfismo (Matemáticas) - Investigaciones
Espacios analíticos - Investigaciones
topic Superficies de Riemann - Investigaciones
Isomorfismo (Matemáticas) - Investigaciones
Espacios analíticos - Investigaciones
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether this set has an extra structure, turning it into some kind of \textit{space}. In this memoir, we focus on these questions in the genus 1 case. As a matter of fact, we shall also fix some extra data: a base point on our genus 1 curve. The moduli space we obtain by doing this is called the moduli space of elliptic curves and the goal of the thesis is to show that this space is a complex analytic space, in a sense that we will make precise along the way.
publishDate 2019
dc.date.issued.es_CO.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-09-03T14:14:49Z
dc.date.available.none.fl_str_mv 2020-09-03T14:14:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/43725
dc.identifier.pdf.none.fl_str_mv u830743.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/43725
identifier_str_mv u830743.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 37 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ccb77d73-6f8e-411c-99f7-e75809d76d69/download
https://repositorio.uniandes.edu.co/bitstreams/9f4a2739-0613-4062-9c1f-cc75a4185ce6/download
https://repositorio.uniandes.edu.co/bitstreams/74de213a-5e51-49a9-afd3-5dfed2a185f9/download
bitstream.checksum.fl_str_mv 42f193d1cdedc679ad4245606f3e48b7
595cd22776b8fa35d5047b50ebdd4649
ca9acc783ae2f2abcb2bed4c541d6672
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133899910774784