The moduli stack of elliptic curves
By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether thi...
- Autores:
-
Pérez Bernal, Juan Martín
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/43725
- Acceso en línea:
- http://hdl.handle.net/1992/43725
- Palabra clave:
- Superficies de Riemann - Investigaciones
Isomorfismo (Matemáticas) - Investigaciones
Espacios analíticos - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_30200d37f478ce9185716ec93e365ab3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/43725 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Schaffhauser, Florent8ee887f6-cc38-42d0-af3d-ba696ba4229e500Pérez Bernal, Juan Martíneba8ebe3-54e6-4494-836f-25008902d375500Bressler, PaulBiedermann, Georg2020-09-03T14:14:49Z2020-09-03T14:14:49Z2019http://hdl.handle.net/1992/43725u830743.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether this set has an extra structure, turning it into some kind of \textit{space}. In this memoir, we focus on these questions in the genus 1 case. As a matter of fact, we shall also fix some extra data: a base point on our genus 1 curve. The moduli space we obtain by doing this is called the moduli space of elliptic curves and the goal of the thesis is to show that this space is a complex analytic space, in a sense that we will make precise along the way."Por el espacio moduli de superficies de Riemann de genero g, nos referimos al conjunto de clases de isomorfismo de estructuras complejo-analíticas sobre una superficie cerrada orientada de genero g, fijo de una vez por todas. No es claro a priori por qué este conjunto es un espacio o tiene propiedades intrínsecas. En este trabajo, nos concentramos en esta pregunta para el caso de genero 1. El objetivo del trabajo es demostrar que el espacio moduli obtenido es un espacio complejo-analítico, en un sentido que se precisara a lo largo del trabajo."--Tomado del Formato de Documento de Grado.Magíster en MatemáticasMaestría37 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaThe moduli stack of elliptic curvesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMSuperficies de Riemann - InvestigacionesIsomorfismo (Matemáticas) - InvestigacionesEspacios analíticos - InvestigacionesMatemáticasPublicationTEXTu830743.pdf.txtu830743.pdf.txtExtracted texttext/plain95154https://repositorio.uniandes.edu.co/bitstreams/ccb77d73-6f8e-411c-99f7-e75809d76d69/download42f193d1cdedc679ad4245606f3e48b7MD54ORIGINALu830743.pdfapplication/pdf664530https://repositorio.uniandes.edu.co/bitstreams/9f4a2739-0613-4062-9c1f-cc75a4185ce6/download595cd22776b8fa35d5047b50ebdd4649MD51THUMBNAILu830743.pdf.jpgu830743.pdf.jpgIM Thumbnailimage/jpeg15408https://repositorio.uniandes.edu.co/bitstreams/74de213a-5e51-49a9-afd3-5dfed2a185f9/downloadca9acc783ae2f2abcb2bed4c541d6672MD551992/43725oai:repositorio.uniandes.edu.co:1992/437252023-10-10 16:47:09.136http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
The moduli stack of elliptic curves |
title |
The moduli stack of elliptic curves |
spellingShingle |
The moduli stack of elliptic curves Superficies de Riemann - Investigaciones Isomorfismo (Matemáticas) - Investigaciones Espacios analíticos - Investigaciones Matemáticas |
title_short |
The moduli stack of elliptic curves |
title_full |
The moduli stack of elliptic curves |
title_fullStr |
The moduli stack of elliptic curves |
title_full_unstemmed |
The moduli stack of elliptic curves |
title_sort |
The moduli stack of elliptic curves |
dc.creator.fl_str_mv |
Pérez Bernal, Juan Martín |
dc.contributor.advisor.none.fl_str_mv |
Schaffhauser, Florent |
dc.contributor.author.none.fl_str_mv |
Pérez Bernal, Juan Martín |
dc.contributor.jury.none.fl_str_mv |
Bressler, Paul Biedermann, Georg |
dc.subject.armarc.es_CO.fl_str_mv |
Superficies de Riemann - Investigaciones Isomorfismo (Matemáticas) - Investigaciones Espacios analíticos - Investigaciones |
topic |
Superficies de Riemann - Investigaciones Isomorfismo (Matemáticas) - Investigaciones Espacios analíticos - Investigaciones Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
By moduli space of Riemann surfaces of genus g, where g is a non-negative integer, we mean the set of isomorphism classes of complex analytic structures on a closed oriented surface of genus g, fixed once and for all. It is not clear \textit{a priori} why this definition makes sense, nor whether this set has an extra structure, turning it into some kind of \textit{space}. In this memoir, we focus on these questions in the genus 1 case. As a matter of fact, we shall also fix some extra data: a base point on our genus 1 curve. The moduli space we obtain by doing this is called the moduli space of elliptic curves and the goal of the thesis is to show that this space is a complex analytic space, in a sense that we will make precise along the way. |
publishDate |
2019 |
dc.date.issued.es_CO.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T14:14:49Z |
dc.date.available.none.fl_str_mv |
2020-09-03T14:14:49Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/43725 |
dc.identifier.pdf.none.fl_str_mv |
u830743.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/43725 |
identifier_str_mv |
u830743.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
37 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ccb77d73-6f8e-411c-99f7-e75809d76d69/download https://repositorio.uniandes.edu.co/bitstreams/9f4a2739-0613-4062-9c1f-cc75a4185ce6/download https://repositorio.uniandes.edu.co/bitstreams/74de213a-5e51-49a9-afd3-5dfed2a185f9/download |
bitstream.checksum.fl_str_mv |
42f193d1cdedc679ad4245606f3e48b7 595cd22776b8fa35d5047b50ebdd4649 ca9acc783ae2f2abcb2bed4c541d6672 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133899910774784 |