Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas

La motivación subyacente en esta investigación radica en la necesidad de comprender y destacar cuál es la contribución del policloruro de vinilo (PVC) en el contexto ambiental, basándose en la disponibilidad de técnicas de reciclaje químico del mismo. Además de comprender si dichas técnicas llegan a...

Full description

Autores:
Meléndez Plata, Gabriela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73473
Acceso en línea:
https://hdl.handle.net/1992/73473
Palabra clave:
Reciclaje químico
Policloruro de vinilo
Despolimerización térmica
Despolimerización química
Despolimerización basada en disolventes
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_2fcc3032369fbb9777685e476ea00a92
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73473
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
title Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
spellingShingle Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
Reciclaje químico
Policloruro de vinilo
Despolimerización térmica
Despolimerización química
Despolimerización basada en disolventes
Ingeniería
title_short Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
title_full Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
title_fullStr Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
title_full_unstemmed Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
title_sort Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticas
dc.creator.fl_str_mv Meléndez Plata, Gabriela
dc.contributor.advisor.none.fl_str_mv Saldarriaga Valderrama, Juan Guillermo
dc.contributor.author.none.fl_str_mv Meléndez Plata, Gabriela
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::Centro de Investigaciones en Acueductos y Alcantarillados - Ciacua
dc.subject.keyword.spa.fl_str_mv Reciclaje químico
Policloruro de vinilo
Despolimerización térmica
Despolimerización química
Despolimerización basada en disolventes
topic Reciclaje químico
Policloruro de vinilo
Despolimerización térmica
Despolimerización química
Despolimerización basada en disolventes
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description La motivación subyacente en esta investigación radica en la necesidad de comprender y destacar cuál es la contribución del policloruro de vinilo (PVC) en el contexto ambiental, basándose en la disponibilidad de técnicas de reciclaje químico del mismo. Además de comprender si dichas técnicas llegan a ser viables en el ámbito económico. Dado lo anterior, este trabajo busca promover una comprensión equilibrada del PVC y su potencial en el mercado donde la sostenibilidad es esencial. Al investigar a fondo el estado del arte del reciclaje y aprovechamiento químico del PVC al finalizar su vida útil, se busca resaltar como este polímero puede hacer parte de soluciones ambientales. Al hacerlo se exponen diversas técnicas de reciclaje químico disponibles para el material, lo cual busca influenciar en futuras prácticas y en la toma de decisiones basada en evidencia en relación con el reciclaje del PVC.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-07
dc.date.accessioned.none.fl_str_mv 2024-01-25T16:39:37Z
dc.date.available.none.fl_str_mv 2024-01-25T16:39:37Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73473
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73473
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Achilias, D. S., Giannoulis, A., & Papageorgiou, G. Z. (2013). Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polymer Bulletin, 63, 449–465.
Acosta, A. (2017). Aplicaciones biotecnológicas a la degradación de residuos plásticos. Facultaf de Ciencias Experimentales, Universidad Pablo de Olavide, 1, 1–4. https://www.upo.es/cms1/export/sites/upo/moleqla/documentos/Numero35/Destacado-2.pdf
Adeniyi, A. G., Amusa, V. T., Iwuozor, K. O., & Emenike, E. C. (2022). Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Cleaner Engineering and Technology, 11, 100564. https://doi.org/https://doi.org/10.1016/j.clet.2022.100564
Adeola, F. O. (2018). WEEE generation and the consequences of its improper disposal. In Waste Electrical and Electronic Equipment Recycling (pp. 13–31). Elsevier.
Agarski, B., Vukelic, D., Micunovic, M. I., & Budak, I. (2019). Evaluation of the environmental impact of plastic cap production, packaging, and disposal. Journal of Environmental Management, 245, 55–65.
Altarawneh, S., Al-Harahsheh, M., Dodds, C., Buttress, A., & Kingman, S. (2022). Thermal degradation kinetics of polyvinyl chloride in presence of zinc oxide. Thermochimica Acta, 707, 179105. https://doi.org/https://doi.org/10.1016/j.tca.2021.179105
AlZgool, M. R. H., Shah, S. M. M., & Ahmed, U. (2020). IMPACT OF ENERGY CONSUMPTION AND ECONOMIC GROWTH ON ENVIRONMENTAL PERFORMANCE: IMPLICATIONS FOR GREEN POLICY PRACTITIONERS. International Journal of Energy Economics and Policy, 10(5), 655–662. https://doi.org/10.32479/ijeep.10222
Arena, U., & Di Gregorio, F. (2014). Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor. Energy, 68, 735–743. https://doi.org/https://doi.org/10.1016/j.energy.2014.01.084
Australian Goverment. (2023). Hydrochloric acid. Department of Cliamte Change, Energy, the Enviroment and Water. https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/hydrochloric-acid#:~:text=Hydrogen chloride released into the,processes that cause photochemical smog.
Berenguer, J. M., & Corraliza, J. A. (2000). Preocupación ambiental y comportamientos ecológicos. Psicothema, 325–329.
Brignon, J.-M. (2021). Costs and benefits of recycling PVC contaminated with the legacy hazardous plasticizer DEHP. Waste Management & Research, 39(9), 1185–1192. https://doi.org/10.1177/0734242X211006755
Calosi, M., Renon, M., Belletti, G., Mazzanti, V., Mollica, F., Massi, A., & Bertoldo, M. (2022). Glycolysis of semi-interpenetrated polymer network foam based on poly (vinyl chloride) for recovery and reuse of the individual components. WASTE MANAGEMENT, 153, 229–239. https://doi.org/10.1016/j.wasman.2022.09.001
Cho, M.-H., Choi, Y.-K., & Kim, J.-S. (2015). Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy (Oxford), 87, 586–593. https://doi.org/10.1016/j.energy.2015.05.026
Choudhury, N., Kim, A., Kim, M., & Kim, B. S. (2023). Mechanochemical Degradation of Poly(vinyl chloride) into Nontoxic Water-Soluble Products via Sequential Dechlorination, Heterolytic Oxirane Ring-Opening, and Hydrolysis. ADVANCED MATERIALS. https://doi.org/10.1002/adma.202304113
Clarivate. (2023). Scientific & Academic Research - Web of Science plarform. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
De Jong, R., & Bus, D. (2023). VOSviewer: putting research into context. Research Software Community Leiden - Universiteit Leiden, 0–7. https://doi.org/10.21428/a1847950.acdc99d6
Elgegren, M., Tiravanti, G. J., Ortiz, B. A., Otero, M. E., Wagner, F., Cerrón, D. A., & Nakamatsu, J. (2012). Reciclaje químico de desechos plásticos. Revista de La Sociedad Química Del Perú, 78(2), 105–119.
Elservier. (2022). About Scorpus. https://www.elsevier.com/solutions/scopus
Evricom. (2020). Cera de polietileno. https://evricom.bg/es/tipos-de-cera/ceras-sinteticas/cera-de-polietileno/
Formulación Química. (n.d.). Cloruro de hierro (II). Retrieved September 18, 2023, from https://www.formulacionquimica.com/FeCl2/
Gala, A., Catalán-Martínez, D., Guerrero, M., & Serra, J. M. (2021). Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels. Fuel, 287, 119400. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119400
Gama, N. V, Santos, R., Godinho, B., Silva, R., & Ferreira, A. (2019). Methyl Acetyl Ricinoleate as Polyvinyl Chloride Plasticizer. Journal of Polymers and the Environment, 27(4), 703–709. https://doi.org/10.1007/s10924-019-01383-5
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made.
Glas, D., Hulsbosch, J., Dubois, P., Binnemans, K., & De Vos, D. E. (2014). End‐of‐Life Treatment of Poly (Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids. ChemSusChem, 7(2), 610–617.
Gobierno Nacional. (2022). Conozca los beneficios tributarios para empresas que ayuden a proteger el medio ambiente. https://www.minambiente.gov.co/conozca-los-beneficios-tributarios-para-empresas-que-ayuden-a-proteger-el-medio-ambiente/
Grause, G., Hirahashi, S., Toyoda, H., Kameda, T., & Yoshioka, T. (2017). Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. Journal of Material Cycles and Waste Management, 19, 612–622.
Greenpeace. (2019). Plásticos en los océanos. INCyTU Oficina de Información Científica y Tecnológia Para El Congreso de La Unión, 34, 5. file:///C:/Users/HP/Downloads/COFOPRI/plasticos_en_los_oceanos_LR.pdf
Gribkoff, E. (2022). Chemical recycling grows — along with concerns about its environmental impacts. Enviromental Health News. https://www.ehn.org/chemical-recycling-2658348681.html
Hong, D., Gao, P., & Wang, C. (2022). A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal. Energy, 239, 122258.
Huang, J., Li, X., Zeng, G., Cheng, X., Tong, H., & Wang, D. (2018). Thermal decomposition mechanisms of poly(vinyl chloride): A computational study. Waste Management, 76, 483–496. https://doi.org/https://doi.org/10.1016/j.wasman.2018.03.033
Interempresas. (2023). Delta Tecnic transforma los productos de PVC reciclados con su línea de masterbatch de color. https://www.interempresas.net/Plastico/Articulos/467658-Delta-Tecnic-transforma-productos-de-PvC-reciclados-con-su-linea-de-masterbatch-de-color.html
Jia, P., Hu, L., Shang, Q., Wang, R., Zhang, M., & Zhou, Y. (2017). Self-Plasticization of PVC Materials via Chemical Modification of Mannich Base of Cardanol Butyl Ether. ACS Sustainable Chemistry & Engineering, 5(8), 6665–6673. https://doi.org/10.1021/acssuschemeng.7b00900
Jia, P., Zhang, M., Hu, L., Song, F., Feng, G., & Zhou, Y. (2018). A strategy for nonmigrating plasticized PVC modified with mannich base of waste cooking oil methyl ester. Scientific Reports, 8(1), 1589.
Jia, P., Zhang, M., Hu, L., Wang, R., Sun, C., & Zhou, Y. (2017). Cardanol groups grafted on poly (vinyl chloride)—synthesis, performance and plasticization mechanism. Polymers, 9(11), 621.
Khatoon, N., Jamal, A., & Ali, M. I. (2019). Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 40(11), 1366–1375.
Kumagai, S., Hirahashi, S., Grause, G., Kameda, T., Toyoda, H., & Yoshioka, T. (2018). Alkaline hydrolysis of PVC-coated PET fibers for simultaneous recycling of PET and PVC. Journal of Material Cycles and Waste Management, 20(1), 439–449. https://doi.org/10.1007/s10163-017-0614-4
Lalhmangaihzuala, S., Laldinpuii, Z., Lalmuanpuia, C., & Vanlaldinpuia, K. (2020). Glycolysis of poly (ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst. Polymers, 13(1), 37.
Lewandowski, K., & Skórczewska, K. (2022). A Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. In Polymers (Vol. 14, Issue 15). https://doi.org/10.3390/polym14153035
Li, D., Lei, S., Wang, P., Zhong, L., Ma, W., & Chen, G. (2021). Study on the pyrolysis behaviors of mixed waste plastics. Renewable Energy, 173, 662–674. https://doi.org/https://doi.org/10.1016/j.renene.2021.04.035
Loa Olivia. (2022, June 14). Can chemical recycling close the plastic loop? | Wood Mackenzie. Wood Mackenzie. https://www.woodmac.com/news/opinion/can-chemical-recycling-close-the-plastic-loop/?utm_source=chems-nurture-2023&utm_medium=email&utm_content=chems-insight-chems-recycling-email&utm_campaign=chems-2023-sustainability
Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576–596. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.032
Lu, J., Borjigin, S., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T. (2020). Machine learning-based discrete element reaction model for predicting the dechlorination of poly (vinyl chloride) in NaOH/ethylene glycol solvent with ball milling. Chemical Engineering Journal Advances, 3, 100025. https://doi.org/https://doi.org/10.1016/j.ceja.2020.100025
Lu, J., Ma, S., & Gao, J. (20013). Study on the Pressurized Hydrolysis Dechlorination of PVC. Energy & Fuels, 16(5), 1251–1255. https://doi.org/10.1021/ef020048t
Lu, J. Q., Borjigin, S., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T. (2019). Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations. WASTE MANAGEMENT, 99, 31–41. https://doi.org/10.1016/j.wasman.2019.08.034
Lu, L., Kumagai, S., Kameda, T., Luo, L., & Yoshioka, T. (2019). Degradation of PVC waste into a flexible polymer by chemical modification using DINP moieties. RSC Advances, 9(49), 28870–28875.
Lu, L., Li, W., Cheng, Y., & Liu, M. (2023). Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. Waste Management (Elmsford), 166, 245–258. https://doi.org/10.1016/j.wasman.2023.05.012
Lu, L., Zhong, H., Wang, T., Wu, J., Jin, F., & Yoshioka, T. (2020). A new strategy for CO 2 utilization with waste plastics: conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green Chemistry, 22(2), 352–358.
MERCK. (2023). Etilmetilcetona SDS. https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM-109708?Origin=PDP
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022
Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709.
Mulder, K., & Knot, M. (2001). PVC plastic: a history of systems development and entrenchment. Technology in Society, 23(2), 265–286.
Nishibata, H., Uddin, M. A., & Kato, Y. (2020). Simultaneous degradation and dechlorination of poly (vinyl chloride) by a combination of superheated steam and CaO catalyst/adsorbent. Polymer Degradation and Stability, 179, 109225. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2020.109225
Osswald, T. A., Aquite, W., Ramírez, D., López, L., Puentes, J., Pérez, C., & RODRÍGUEZ, S. G. (2013). Retos en la Industria de procesamiento de plásticos y compuestos. Dyna, 79(175), 20–28.
Parlamento Europeo. (2021). Plásticos en el océano: datos, consecuencias y nuevas normas europeas. https://www.europarl.europa.eu/news/es/headlines/society/20181005STO15110/plasticos-en-el-oceano-datos-efectos-y-nuevas-normas-europeas-infografia
Partners, C. L. (2020). Transitioning to a Circular System for Plastics.
Petrović, E., & Hamer, L. (2018). Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC). Buildings (Basel), 8(2), 28. https://doi.org/10.3390/buildings8020028
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., & Santos, J. (2016). Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel, 180, 407–416. https://doi.org/https://doi.org/10.1016/j.fuel.2016.04.048
Polímeros. (2016). DEGRADACIÓN Y DESPOLIMERIZACIÓN. https://todoenpolimeros.com/2016/11/23/degradacion-y-despolimerizacion/
Qi, Y., He, J., Li, Y., Yu, X., Xiu, F.-R., Deng, Y., & Gao, X. (2018). A novel treatment method of PVC-medical waste by near-critical methanol: Dechlorination and additives recovery. Waste Management, 80, 1–9.
Qi, Y., He, J., Xiu, F.-R., Nie, W., & Chen, M. (2018). Partial oxidation treatment of waste polyvinyl chloride in critical water: Preparation of benzaldehyde/acetophenone and dechlorination. Journal of Cleaner Production, 196, 331–339. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.06.074
Qi, Y. Y., Sun, Y. W., Song, D. D., Wang, Y., & Xiu, F. R. (2023). PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. TALANTA, 253. https://doi.org/10.1016/j.talanta.2022.124039
Quantis. (2020). Life Cycle Assessment of Plastic Energy Technology for the Chemical Recycling of Mixed Plastic Waste. 9. https://plasticenergy.com/wp-content/uploads/2020/10/Plastic-Energy-LCA-Executive-Summary.pdf
Ragaert, K., Huysveld, S., Vyncke, G., Hubo, S., Veelaert, L., Dewulf, J., & Du Bois, E. (2020). Design from recycling: A complex mixed plastic waste case study. Resources, Conservation and Recycling, 155, 104646.
Raziyafathima, M., Praseetha, P. K., & Rimal, I. R. S. (2016). Microbial degradation of plastic waste: a review. Chemical and Biological Sciences, 4, 231–242.
REHAU. (2022). ¿Cuánto tiempo duran las ventanas de PVC? https://www.rehau.com/es-es/cuanto-tiempo-duran-ventanas-pvc#:~:text=En líneas generales%2C podemos decir,durante una vida tan prolongada.
Rojo-Nieto, E., & Montoto Martínez, T. (2017). Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. Ecologistas en acción.
Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.
Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42(3), 2000415.
Sharma, S., Sharma, V., & Chatterjee, S. (2023). Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment-A review. Science of The Total Environment, 875, 162627.
Sherwood, J. (2020). Closed-loop recycling of polymers using solvents: Remaking plastics for a circular economy. Johnson Matthey Technology Review, 64(1), 4–15.
Shilpa, Basak, N., & Meena, S. S. (2022). Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16(12), 161.
Shirazimoghaddam, S., Amin, I., Faria Albanese, J. A., & Shiju, N. R. (2023). Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts. ACS Engineering Au, 3(1), 37–44. https://doi.org/10.1021/acsengineeringau.2c00029
Soyemi, A., & Szilvasi, T. (2023). Calculated Physicochemical Properties of Glycerol-Derived Solvents to Drive Plastic Waste Recycling. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 62(15), 6322–6337. https://doi.org/10.1021/acs.iecr.2c04567 WE - Science Citation Index Expanded (SCI-EXPANDED)
Stadler, B. M., Hinze, S., Tin, S., & de Vries, J. G. (2019). Hydrogenation of polyesters to polyether polyols. ChemSusChem, 12(17), 4082–4087.
Thanh Truc, N. T., & Lee, B.-K. (2019). Sustainable hydrophilization to separate hazardous chlorine PVC from plastic wastes using H2O2/ultrasonic irrigation. Waste Management (Elmsford), 88, 28–38. https://doi.org/10.1016/j.wasman.2019.03.033
Tomatis, M., Greer, A. J., Oster, K., Tedstone, A., Cuéllar-Franca, R. M., Garforth, A., Hardacre, C., & Azapagic, A. (2023). Environmental assessment of a novel ionic-liquid based method for recycling of PVC in composite materials. Science of The Total Environment, 163999. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.163999
VOSviewer. (2023). VOSviewer. https://www.vosviewer.com/
Wang, C., Shen, M., Huo, H., Ren, H., & Johnson, M. (2011). Using metal nanostructures to form hydrocarbons from carbon dioxide, water and sunlight. AIP Advances, 1(4).
Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2012). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1–18.
Wu, J., Chen, T., Luo, X., Han, D., Wang, Z., & Wu, J. (2014). TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Management, 34(3), 676–682.
Ye, L. H., Li, T. L., & Hong, L. (2021). Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: Mitigation of chlorine emissions during PVC recycling. WASTE MANAGEMENT, 126, 832–842. https://doi.org/10.1016/j.wasman.2021.04.021
Yu, J., Sun, L., Ma, C., Qiao, Y., & Yao, H. (2016). Thermal degradation of PVC: A review. Waste Management, 48, 300–314.
Zakharyan, E. M., Petrukhina, N. N., & Maksimov, A. L. (2020). Pathways of Chemical Recycling of Polyvinyl Chloride: Part 1. Russian Journal of Applied Chemistry, 93(9), 1271–1313.
Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/https://doi.org/10.1016/j.jksus.2021.101538
Zhao, Y. B., Lv, X. D., & Ni, H. G. (2018). Solvent-based separation and recycling of waste plastics: A review. CHEMOSPHERE, 209, 707–720. https://doi.org/10.1016/j.chemosphere.2018.06.095 WE - Science Citation Index Expanded (SCI-EXPANDED)
Zhe, Z., Peng, H., Yang, D., Zhang, G., Zhang, J., & Ju, F. (2021). Polyvinyl Chloride Degradation by Intestinal Klebsiella of Pest larvae. BioRxiv, 2010–2021.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 83 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Civil y Ambiental
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/4765b03c-e4b8-469e-9053-d3f5d8ea6630/download
https://repositorio.uniandes.edu.co/bitstreams/6d064d94-c91a-4941-9004-3c8872847caf/download
https://repositorio.uniandes.edu.co/bitstreams/cb493d4f-78d9-4aa0-a9b0-a22b22cc2340/download
https://repositorio.uniandes.edu.co/bitstreams/5c7766b0-7df9-4203-b810-00ceac9d3979/download
https://repositorio.uniandes.edu.co/bitstreams/15b39984-c16c-4028-a691-c7ee78bdf344/download
https://repositorio.uniandes.edu.co/bitstreams/46103eba-b477-47f9-85eb-7210ecccb7ff/download
https://repositorio.uniandes.edu.co/bitstreams/e698ccc2-8985-4ad9-bf67-874034985072/download
https://repositorio.uniandes.edu.co/bitstreams/34d45603-3abb-47fa-b9e8-def004cf9775/download
bitstream.checksum.fl_str_mv ba4fbd4546c0415b0699c4eb63e343ae
04d04789c48765a48dd2dafc15611c0f
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
48bb9d925a2534e37ca688c07fc77fe2
b086777ca36e2427f41a1af2e272424c
8f156b705c7c7961257ff519657a402f
1acabffcaef1d225fab4f6fa905baa7d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111827934969856
spelling Saldarriaga Valderrama, Juan Guillermovirtual::20577-1Meléndez Plata, GabrielaFacultad de Ingeniería::Centro de Investigaciones en Acueductos y Alcantarillados - Ciacua2024-01-25T16:39:37Z2024-01-25T16:39:37Z2023-12-07https://hdl.handle.net/1992/73473instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La motivación subyacente en esta investigación radica en la necesidad de comprender y destacar cuál es la contribución del policloruro de vinilo (PVC) en el contexto ambiental, basándose en la disponibilidad de técnicas de reciclaje químico del mismo. Además de comprender si dichas técnicas llegan a ser viables en el ámbito económico. Dado lo anterior, este trabajo busca promover una comprensión equilibrada del PVC y su potencial en el mercado donde la sostenibilidad es esencial. Al investigar a fondo el estado del arte del reciclaje y aprovechamiento químico del PVC al finalizar su vida útil, se busca resaltar como este polímero puede hacer parte de soluciones ambientales. Al hacerlo se exponen diversas técnicas de reciclaje químico disponibles para el material, lo cual busca influenciar en futuras prácticas y en la toma de decisiones basada en evidencia en relación con el reciclaje del PVC.Ingeniero AmbientalPregrado83 páginasapplication/pdfspaUniversidad de los AndesIngeniería AmbientalFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida: Una perspectiva de la viabilidad económica y medioambiental de este tipo de prácticasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPReciclaje químicoPolicloruro de viniloDespolimerización térmicaDespolimerización químicaDespolimerización basada en disolventesIngenieríaAchilias, D. S., Giannoulis, A., & Papageorgiou, G. Z. (2013). Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polymer Bulletin, 63, 449–465.Acosta, A. (2017). Aplicaciones biotecnológicas a la degradación de residuos plásticos. Facultaf de Ciencias Experimentales, Universidad Pablo de Olavide, 1, 1–4. https://www.upo.es/cms1/export/sites/upo/moleqla/documentos/Numero35/Destacado-2.pdfAdeniyi, A. G., Amusa, V. T., Iwuozor, K. O., & Emenike, E. C. (2022). Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Cleaner Engineering and Technology, 11, 100564. https://doi.org/https://doi.org/10.1016/j.clet.2022.100564Adeola, F. O. (2018). WEEE generation and the consequences of its improper disposal. In Waste Electrical and Electronic Equipment Recycling (pp. 13–31). Elsevier.Agarski, B., Vukelic, D., Micunovic, M. I., & Budak, I. (2019). Evaluation of the environmental impact of plastic cap production, packaging, and disposal. Journal of Environmental Management, 245, 55–65.Altarawneh, S., Al-Harahsheh, M., Dodds, C., Buttress, A., & Kingman, S. (2022). Thermal degradation kinetics of polyvinyl chloride in presence of zinc oxide. Thermochimica Acta, 707, 179105. https://doi.org/https://doi.org/10.1016/j.tca.2021.179105AlZgool, M. R. H., Shah, S. M. M., & Ahmed, U. (2020). IMPACT OF ENERGY CONSUMPTION AND ECONOMIC GROWTH ON ENVIRONMENTAL PERFORMANCE: IMPLICATIONS FOR GREEN POLICY PRACTITIONERS. International Journal of Energy Economics and Policy, 10(5), 655–662. https://doi.org/10.32479/ijeep.10222Arena, U., & Di Gregorio, F. (2014). Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor. Energy, 68, 735–743. https://doi.org/https://doi.org/10.1016/j.energy.2014.01.084Australian Goverment. (2023). Hydrochloric acid. Department of Cliamte Change, Energy, the Enviroment and Water. https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/hydrochloric-acid#:~:text=Hydrogen chloride released into the,processes that cause photochemical smog.Berenguer, J. M., & Corraliza, J. A. (2000). Preocupación ambiental y comportamientos ecológicos. Psicothema, 325–329.Brignon, J.-M. (2021). Costs and benefits of recycling PVC contaminated with the legacy hazardous plasticizer DEHP. Waste Management & Research, 39(9), 1185–1192. https://doi.org/10.1177/0734242X211006755Calosi, M., Renon, M., Belletti, G., Mazzanti, V., Mollica, F., Massi, A., & Bertoldo, M. (2022). Glycolysis of semi-interpenetrated polymer network foam based on poly (vinyl chloride) for recovery and reuse of the individual components. WASTE MANAGEMENT, 153, 229–239. https://doi.org/10.1016/j.wasman.2022.09.001Cho, M.-H., Choi, Y.-K., & Kim, J.-S. (2015). Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy (Oxford), 87, 586–593. https://doi.org/10.1016/j.energy.2015.05.026Choudhury, N., Kim, A., Kim, M., & Kim, B. S. (2023). Mechanochemical Degradation of Poly(vinyl chloride) into Nontoxic Water-Soluble Products via Sequential Dechlorination, Heterolytic Oxirane Ring-Opening, and Hydrolysis. ADVANCED MATERIALS. https://doi.org/10.1002/adma.202304113Clarivate. (2023). Scientific & Academic Research - Web of Science plarform. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/De Jong, R., & Bus, D. (2023). VOSviewer: putting research into context. Research Software Community Leiden - Universiteit Leiden, 0–7. https://doi.org/10.21428/a1847950.acdc99d6Elgegren, M., Tiravanti, G. J., Ortiz, B. A., Otero, M. E., Wagner, F., Cerrón, D. A., & Nakamatsu, J. (2012). Reciclaje químico de desechos plásticos. Revista de La Sociedad Química Del Perú, 78(2), 105–119.Elservier. (2022). About Scorpus. https://www.elsevier.com/solutions/scopusEvricom. (2020). Cera de polietileno. https://evricom.bg/es/tipos-de-cera/ceras-sinteticas/cera-de-polietileno/Formulación Química. (n.d.). Cloruro de hierro (II). Retrieved September 18, 2023, from https://www.formulacionquimica.com/FeCl2/Gala, A., Catalán-Martínez, D., Guerrero, M., & Serra, J. M. (2021). Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels. Fuel, 287, 119400. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119400Gama, N. V, Santos, R., Godinho, B., Silva, R., & Ferreira, A. (2019). Methyl Acetyl Ricinoleate as Polyvinyl Chloride Plasticizer. Journal of Polymers and the Environment, 27(4), 703–709. https://doi.org/10.1007/s10924-019-01383-5Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made.Glas, D., Hulsbosch, J., Dubois, P., Binnemans, K., & De Vos, D. E. (2014). End‐of‐Life Treatment of Poly (Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids. ChemSusChem, 7(2), 610–617.Gobierno Nacional. (2022). Conozca los beneficios tributarios para empresas que ayuden a proteger el medio ambiente. https://www.minambiente.gov.co/conozca-los-beneficios-tributarios-para-empresas-que-ayuden-a-proteger-el-medio-ambiente/Grause, G., Hirahashi, S., Toyoda, H., Kameda, T., & Yoshioka, T. (2017). Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. Journal of Material Cycles and Waste Management, 19, 612–622.Greenpeace. (2019). Plásticos en los océanos. INCyTU Oficina de Información Científica y Tecnológia Para El Congreso de La Unión, 34, 5. file:///C:/Users/HP/Downloads/COFOPRI/plasticos_en_los_oceanos_LR.pdfGribkoff, E. (2022). Chemical recycling grows — along with concerns about its environmental impacts. Enviromental Health News. https://www.ehn.org/chemical-recycling-2658348681.htmlHong, D., Gao, P., & Wang, C. (2022). A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal. Energy, 239, 122258.Huang, J., Li, X., Zeng, G., Cheng, X., Tong, H., & Wang, D. (2018). Thermal decomposition mechanisms of poly(vinyl chloride): A computational study. Waste Management, 76, 483–496. https://doi.org/https://doi.org/10.1016/j.wasman.2018.03.033Interempresas. (2023). Delta Tecnic transforma los productos de PVC reciclados con su línea de masterbatch de color. https://www.interempresas.net/Plastico/Articulos/467658-Delta-Tecnic-transforma-productos-de-PvC-reciclados-con-su-linea-de-masterbatch-de-color.htmlJia, P., Hu, L., Shang, Q., Wang, R., Zhang, M., & Zhou, Y. (2017). Self-Plasticization of PVC Materials via Chemical Modification of Mannich Base of Cardanol Butyl Ether. ACS Sustainable Chemistry & Engineering, 5(8), 6665–6673. https://doi.org/10.1021/acssuschemeng.7b00900Jia, P., Zhang, M., Hu, L., Song, F., Feng, G., & Zhou, Y. (2018). A strategy for nonmigrating plasticized PVC modified with mannich base of waste cooking oil methyl ester. Scientific Reports, 8(1), 1589.Jia, P., Zhang, M., Hu, L., Wang, R., Sun, C., & Zhou, Y. (2017). Cardanol groups grafted on poly (vinyl chloride)—synthesis, performance and plasticization mechanism. Polymers, 9(11), 621.Khatoon, N., Jamal, A., & Ali, M. I. (2019). Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 40(11), 1366–1375.Kumagai, S., Hirahashi, S., Grause, G., Kameda, T., Toyoda, H., & Yoshioka, T. (2018). Alkaline hydrolysis of PVC-coated PET fibers for simultaneous recycling of PET and PVC. Journal of Material Cycles and Waste Management, 20(1), 439–449. https://doi.org/10.1007/s10163-017-0614-4Lalhmangaihzuala, S., Laldinpuii, Z., Lalmuanpuia, C., & Vanlaldinpuia, K. (2020). Glycolysis of poly (ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst. Polymers, 13(1), 37.Lewandowski, K., & Skórczewska, K. (2022). A Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. In Polymers (Vol. 14, Issue 15). https://doi.org/10.3390/polym14153035Li, D., Lei, S., Wang, P., Zhong, L., Ma, W., & Chen, G. (2021). Study on the pyrolysis behaviors of mixed waste plastics. Renewable Energy, 173, 662–674. https://doi.org/https://doi.org/10.1016/j.renene.2021.04.035Loa Olivia. (2022, June 14). Can chemical recycling close the plastic loop? | Wood Mackenzie. Wood Mackenzie. https://www.woodmac.com/news/opinion/can-chemical-recycling-close-the-plastic-loop/?utm_source=chems-nurture-2023&utm_medium=email&utm_content=chems-insight-chems-recycling-email&utm_campaign=chems-2023-sustainabilityLopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576–596. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.032Lu, J., Borjigin, S., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T. (2020). Machine learning-based discrete element reaction model for predicting the dechlorination of poly (vinyl chloride) in NaOH/ethylene glycol solvent with ball milling. Chemical Engineering Journal Advances, 3, 100025. https://doi.org/https://doi.org/10.1016/j.ceja.2020.100025Lu, J., Ma, S., & Gao, J. (20013). Study on the Pressurized Hydrolysis Dechlorination of PVC. Energy & Fuels, 16(5), 1251–1255. https://doi.org/10.1021/ef020048tLu, J. Q., Borjigin, S., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T. (2019). Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations. WASTE MANAGEMENT, 99, 31–41. https://doi.org/10.1016/j.wasman.2019.08.034Lu, L., Kumagai, S., Kameda, T., Luo, L., & Yoshioka, T. (2019). Degradation of PVC waste into a flexible polymer by chemical modification using DINP moieties. RSC Advances, 9(49), 28870–28875.Lu, L., Li, W., Cheng, Y., & Liu, M. (2023). Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. Waste Management (Elmsford), 166, 245–258. https://doi.org/10.1016/j.wasman.2023.05.012Lu, L., Zhong, H., Wang, T., Wu, J., Jin, F., & Yoshioka, T. (2020). A new strategy for CO 2 utilization with waste plastics: conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green Chemistry, 22(2), 352–358.MERCK. (2023). Etilmetilcetona SDS. https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM-109708?Origin=PDPMiandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709.Mulder, K., & Knot, M. (2001). PVC plastic: a history of systems development and entrenchment. Technology in Society, 23(2), 265–286.Nishibata, H., Uddin, M. A., & Kato, Y. (2020). Simultaneous degradation and dechlorination of poly (vinyl chloride) by a combination of superheated steam and CaO catalyst/adsorbent. Polymer Degradation and Stability, 179, 109225. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2020.109225Osswald, T. A., Aquite, W., Ramírez, D., López, L., Puentes, J., Pérez, C., & RODRÍGUEZ, S. G. (2013). Retos en la Industria de procesamiento de plásticos y compuestos. Dyna, 79(175), 20–28.Parlamento Europeo. (2021). Plásticos en el océano: datos, consecuencias y nuevas normas europeas. https://www.europarl.europa.eu/news/es/headlines/society/20181005STO15110/plasticos-en-el-oceano-datos-efectos-y-nuevas-normas-europeas-infografiaPartners, C. L. (2020). Transitioning to a Circular System for Plastics.Petrović, E., & Hamer, L. (2018). Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC). Buildings (Basel), 8(2), 28. https://doi.org/10.3390/buildings8020028Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., & Santos, J. (2016). Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel, 180, 407–416. https://doi.org/https://doi.org/10.1016/j.fuel.2016.04.048Polímeros. (2016). DEGRADACIÓN Y DESPOLIMERIZACIÓN. https://todoenpolimeros.com/2016/11/23/degradacion-y-despolimerizacion/Qi, Y., He, J., Li, Y., Yu, X., Xiu, F.-R., Deng, Y., & Gao, X. (2018). A novel treatment method of PVC-medical waste by near-critical methanol: Dechlorination and additives recovery. Waste Management, 80, 1–9.Qi, Y., He, J., Xiu, F.-R., Nie, W., & Chen, M. (2018). Partial oxidation treatment of waste polyvinyl chloride in critical water: Preparation of benzaldehyde/acetophenone and dechlorination. Journal of Cleaner Production, 196, 331–339. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.06.074Qi, Y. Y., Sun, Y. W., Song, D. D., Wang, Y., & Xiu, F. R. (2023). PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. TALANTA, 253. https://doi.org/10.1016/j.talanta.2022.124039Quantis. (2020). Life Cycle Assessment of Plastic Energy Technology for the Chemical Recycling of Mixed Plastic Waste. 9. https://plasticenergy.com/wp-content/uploads/2020/10/Plastic-Energy-LCA-Executive-Summary.pdfRagaert, K., Huysveld, S., Vyncke, G., Hubo, S., Veelaert, L., Dewulf, J., & Du Bois, E. (2020). Design from recycling: A complex mixed plastic waste case study. Resources, Conservation and Recycling, 155, 104646.Raziyafathima, M., Praseetha, P. K., & Rimal, I. R. S. (2016). Microbial degradation of plastic waste: a review. Chemical and Biological Sciences, 4, 231–242.REHAU. (2022). ¿Cuánto tiempo duran las ventanas de PVC? https://www.rehau.com/es-es/cuanto-tiempo-duran-ventanas-pvc#:~:text=En líneas generales%2C podemos decir,durante una vida tan prolongada.Rojo-Nieto, E., & Montoto Martínez, T. (2017). Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. Ecologistas en acción.Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42(3), 2000415.Sharma, S., Sharma, V., & Chatterjee, S. (2023). Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment-A review. Science of The Total Environment, 875, 162627.Sherwood, J. (2020). Closed-loop recycling of polymers using solvents: Remaking plastics for a circular economy. Johnson Matthey Technology Review, 64(1), 4–15.Shilpa, Basak, N., & Meena, S. S. (2022). Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16(12), 161.Shirazimoghaddam, S., Amin, I., Faria Albanese, J. A., & Shiju, N. R. (2023). Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts. ACS Engineering Au, 3(1), 37–44. https://doi.org/10.1021/acsengineeringau.2c00029Soyemi, A., & Szilvasi, T. (2023). Calculated Physicochemical Properties of Glycerol-Derived Solvents to Drive Plastic Waste Recycling. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 62(15), 6322–6337. https://doi.org/10.1021/acs.iecr.2c04567 WE - Science Citation Index Expanded (SCI-EXPANDED)Stadler, B. M., Hinze, S., Tin, S., & de Vries, J. G. (2019). Hydrogenation of polyesters to polyether polyols. ChemSusChem, 12(17), 4082–4087.Thanh Truc, N. T., & Lee, B.-K. (2019). Sustainable hydrophilization to separate hazardous chlorine PVC from plastic wastes using H2O2/ultrasonic irrigation. Waste Management (Elmsford), 88, 28–38. https://doi.org/10.1016/j.wasman.2019.03.033Tomatis, M., Greer, A. J., Oster, K., Tedstone, A., Cuéllar-Franca, R. M., Garforth, A., Hardacre, C., & Azapagic, A. (2023). Environmental assessment of a novel ionic-liquid based method for recycling of PVC in composite materials. Science of The Total Environment, 163999. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.163999VOSviewer. (2023). VOSviewer. https://www.vosviewer.com/Wang, C., Shen, M., Huo, H., Ren, H., & Johnson, M. (2011). Using metal nanostructures to form hydrocarbons from carbon dioxide, water and sunlight. AIP Advances, 1(4).Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2012). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1–18.Wu, J., Chen, T., Luo, X., Han, D., Wang, Z., & Wu, J. (2014). TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Management, 34(3), 676–682.Ye, L. H., Li, T. L., & Hong, L. (2021). Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: Mitigation of chlorine emissions during PVC recycling. WASTE MANAGEMENT, 126, 832–842. https://doi.org/10.1016/j.wasman.2021.04.021Yu, J., Sun, L., Ma, C., Qiao, Y., & Yao, H. (2016). Thermal degradation of PVC: A review. Waste Management, 48, 300–314.Zakharyan, E. M., Petrukhina, N. N., & Maksimov, A. L. (2020). Pathways of Chemical Recycling of Polyvinyl Chloride: Part 1. Russian Journal of Applied Chemistry, 93(9), 1271–1313.Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/https://doi.org/10.1016/j.jksus.2021.101538Zhao, Y. B., Lv, X. D., & Ni, H. G. (2018). Solvent-based separation and recycling of waste plastics: A review. CHEMOSPHERE, 209, 707–720. https://doi.org/10.1016/j.chemosphere.2018.06.095 WE - Science Citation Index Expanded (SCI-EXPANDED)Zhe, Z., Peng, H., Yang, D., Zhang, G., Zhang, J., & Ju, F. (2021). Polyvinyl Chloride Degradation by Intestinal Klebsiella of Pest larvae. BioRxiv, 2010–2021.201921514Publicationhttps://scholar.google.es/citations?user=Lz0SGpIAAAAJvirtual::20577-10000-0003-1265-2949virtual::20577-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000076848virtual::20577-1b405028a-b4ff-4b84-9e85-97a80148970evirtual::20577-1b405028a-b4ff-4b84-9e85-97a80148970evirtual::20577-1ORIGINALFormato de autorización.pdfFormato de autorización.pdfHIDEapplication/pdf252986https://repositorio.uniandes.edu.co/bitstreams/4765b03c-e4b8-469e-9053-d3f5d8ea6630/downloadba4fbd4546c0415b0699c4eb63e343aeMD51Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdfEstado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdfapplication/pdf2218655https://repositorio.uniandes.edu.co/bitstreams/6d064d94-c91a-4941-9004-3c8872847caf/download04d04789c48765a48dd2dafc15611c0fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/cb493d4f-78d9-4aa0-a9b0-a22b22cc2340/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5c7766b0-7df9-4203-b810-00ceac9d3979/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTFormato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain42https://repositorio.uniandes.edu.co/bitstreams/15b39984-c16c-4028-a691-c7ee78bdf344/download48bb9d925a2534e37ca688c07fc77fe2MD55Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdf.txtEstado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdf.txtExtracted texttext/plain101840https://repositorio.uniandes.edu.co/bitstreams/46103eba-b477-47f9-85eb-7210ecccb7ff/downloadb086777ca36e2427f41a1af2e272424cMD57THUMBNAILFormato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg11288https://repositorio.uniandes.edu.co/bitstreams/e698ccc2-8985-4ad9-bf67-874034985072/download8f156b705c7c7961257ff519657a402fMD56Estado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdf.jpgEstado del arte sobre el reciclaje químico y el aprovechamiento del PVC que ha sido desechado o ha cumplido su ciclo de vida.pdf.jpgGenerated Thumbnailimage/jpeg9843https://repositorio.uniandes.edu.co/bitstreams/34d45603-3abb-47fa-b9e8-def004cf9775/download1acabffcaef1d225fab4f6fa905baa7dMD581992/73473oai:repositorio.uniandes.edu.co:1992/734732024-12-04 16:41:43.464http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K