Exploring the application of neural networks for the prediction of vehicle emissions
In this project, data from the EPA's fuel efficiency and emissions tests was used to train neural networks so that they could predict vehicle emissions. Vehicle characteristics were taken directly from the database, driving cycles were analyzed using their velocity and acceleration profiles in...
- Autores:
-
Rodríguez Llorente, Diego
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45206
- Acceso en línea:
- http://hdl.handle.net/1992/45206
- Palabra clave:
- Consumo de combustible
Gases de combustión
Gases de escape en automóviles
Redes neurales (Computadores)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_2ea557aea29da48b74a3bacb33449cbb |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45206 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Exploring the application of neural networks for the prediction of vehicle emissions |
title |
Exploring the application of neural networks for the prediction of vehicle emissions |
spellingShingle |
Exploring the application of neural networks for the prediction of vehicle emissions Consumo de combustible Gases de combustión Gases de escape en automóviles Redes neurales (Computadores) Ingeniería |
title_short |
Exploring the application of neural networks for the prediction of vehicle emissions |
title_full |
Exploring the application of neural networks for the prediction of vehicle emissions |
title_fullStr |
Exploring the application of neural networks for the prediction of vehicle emissions |
title_full_unstemmed |
Exploring the application of neural networks for the prediction of vehicle emissions |
title_sort |
Exploring the application of neural networks for the prediction of vehicle emissions |
dc.creator.fl_str_mv |
Rodríguez Llorente, Diego |
dc.contributor.advisor.none.fl_str_mv |
González Mancera, Andrés Leonardo |
dc.contributor.author.none.fl_str_mv |
Rodríguez Llorente, Diego |
dc.subject.armarc.es_CO.fl_str_mv |
Consumo de combustible Gases de combustión Gases de escape en automóviles Redes neurales (Computadores) |
topic |
Consumo de combustible Gases de combustión Gases de escape en automóviles Redes neurales (Computadores) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
In this project, data from the EPA's fuel efficiency and emissions tests was used to train neural networks so that they could predict vehicle emissions. Vehicle characteristics were taken directly from the database, driving cycles were analyzed using their velocity and acceleration profiles in order to calculate some defining characteristics, and these two groups were used as inputs to predict HC, CO, CO2, and NOx. For most of the project only HC was predicted to simplify the process with the idea that if a model was successful, then the output changed to another gas until a different model was successful with the predictions and so on. By the end of the project Multi-Task learning was applied to predict all four emissions simultaneously hoping that information could be shared between those tasks to improve the predictions. Feature engineering was applied to analyze the input variables and understand if one or more were introducing significant errors into the data and ruining the predictions. The error for the predictions was calculated using Mean Squared Percentage Error (MSPE) to compare the performance of different models. This error was consistently above 10E7% and many predictions were negative, rendering this exploration of neural networks unsuccessful. At the end of the project a phenomenon known as Emissions Deterioration was analyzed based on three different studies to understand how emissions deteriorate with the age of the vehicles. It was found that this phenomenon is much more complex than initially thought. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T15:52:19Z |
dc.date.available.none.fl_str_mv |
2020-09-03T15:52:19Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45206 |
dc.identifier.pdf.none.fl_str_mv |
u827141.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45206 |
identifier_str_mv |
u827141.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
74 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Mecánica |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/6817a11b-1856-4bd7-9805-679d3a357a1a/download https://repositorio.uniandes.edu.co/bitstreams/2f5511fb-9b23-4bef-9f4d-61799f8c1607/download https://repositorio.uniandes.edu.co/bitstreams/e80504a7-a251-485a-aedd-e407c2040bd7/download |
bitstream.checksum.fl_str_mv |
b951b66c09647bd0eb73160bf153550d af73dad3fa41d1c41bc1af9b2d8f4017 ee99ea40a7e3dc184235fe8f2f9aaa28 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133873942790144 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leonardo1a96c006-a679-415f-870a-e3c375a5259a500Rodríguez Llorente, Diegob8dc25ce-4aaf-460b-84d4-72165fe73de15002020-09-03T15:52:19Z2020-09-03T15:52:19Z2019http://hdl.handle.net/1992/45206u827141.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this project, data from the EPA's fuel efficiency and emissions tests was used to train neural networks so that they could predict vehicle emissions. Vehicle characteristics were taken directly from the database, driving cycles were analyzed using their velocity and acceleration profiles in order to calculate some defining characteristics, and these two groups were used as inputs to predict HC, CO, CO2, and NOx. For most of the project only HC was predicted to simplify the process with the idea that if a model was successful, then the output changed to another gas until a different model was successful with the predictions and so on. By the end of the project Multi-Task learning was applied to predict all four emissions simultaneously hoping that information could be shared between those tasks to improve the predictions. Feature engineering was applied to analyze the input variables and understand if one or more were introducing significant errors into the data and ruining the predictions. The error for the predictions was calculated using Mean Squared Percentage Error (MSPE) to compare the performance of different models. This error was consistently above 10E7% and many predictions were negative, rendering this exploration of neural networks unsuccessful. At the end of the project a phenomenon known as Emissions Deterioration was analyzed based on three different studies to understand how emissions deteriorate with the age of the vehicles. It was found that this phenomenon is much more complex than initially thought."En este proyecto, los datos de las pruebas de eficiencia de combustible y emisiones de la EPA se utilizaron para entrenar redes neuronales para que pudieran predecir las emisiones de los vehículos. Las características del vehículo se tomaron directamente de la base de datos, los ciclos de conducción se analizaron utilizando sus perfiles de velocidad y aceleración para calcular algunas características definitorias, y estos dos grupos se usaron como entradas para predecir HC, CO, CO2 y NOx. Para la mayor parte del proyecto, solo se predijo que el HC simplificaría el proceso con la idea de que si un modelo era exitoso, la salida cambiaba a otro gas hasta que un modelo diferente tuviera éxito con las predicciones y así sucesivamente. Al final del proyecto, se aplicó el aprendizaje de tareas múltiples para predecir las cuatro emisiones simultáneamente, con la esperanza de que la información pudiera compartirse entre esas tareas para mejorar las predicciones. La ingeniería de características se aplicó para analizar las variables de entrada y comprender si uno o más estaban introduciendo errores significativos en los datos y arruinando las predicciones. El error para las predicciones se calculó utilizando el error de porcentaje cuadrático medio (MSPE) para comparar el rendimiento de diferentes modelos. Este error fue sistemáticamente superior al 10E7% y muchas predicciones fueron negativas, lo que hace que esta exploración de redes neuronales no tenga éxito. Al final del proyecto, se analizó un fenómeno conocido como Deterioro de Emisiones basado en tres estudios diferentes para comprender cómo se deterioran las emisiones con la edad de los vehículos. Se encontró que este fenómeno es mucho más complejo de lo que se pensaba inicialmente."--Tomado del Formato de Documento de Grado.Ingeniero MecánicoPregrado74 hojasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería Mecánicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaExploring the application of neural networks for the prediction of vehicle emissionsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPConsumo de combustibleGases de combustiónGases de escape en automóvilesRedes neurales (Computadores)IngenieríaPublicationTEXTu827141.pdf.txtu827141.pdf.txtExtracted texttext/plain195060https://repositorio.uniandes.edu.co/bitstreams/6817a11b-1856-4bd7-9805-679d3a357a1a/downloadb951b66c09647bd0eb73160bf153550dMD54THUMBNAILu827141.pdf.jpgu827141.pdf.jpgIM Thumbnailimage/jpeg7078https://repositorio.uniandes.edu.co/bitstreams/2f5511fb-9b23-4bef-9f4d-61799f8c1607/downloadaf73dad3fa41d1c41bc1af9b2d8f4017MD55ORIGINALu827141.pdfapplication/pdf4017694https://repositorio.uniandes.edu.co/bitstreams/e80504a7-a251-485a-aedd-e407c2040bd7/downloadee99ea40a7e3dc184235fe8f2f9aaa28MD511992/45206oai:repositorio.uniandes.edu.co:1992/452062023-10-10 16:21:09.654https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |