DeepMAP : deep modular attention for time-series prediction in multi-station environments

We propose model based on deep neural networks for time-series prediction at a specific site using information from multiple measuring stations. The key aspects of this model is the presence of an attention mechanism that dynamically determines the importance of the information provided by the stati...

Full description

Autores:
Roncancio Pinzón, Jonathan Steven
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/53459
Acceso en línea:
http://hdl.handle.net/1992/53459
Palabra clave:
Redes neuronales (Computadores)
Calidad del aire
Análisis de series de tiempo
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:We propose model based on deep neural networks for time-series prediction at a specific site using information from multiple measuring stations. The key aspects of this model is the presence of an attention mechanism that dynamically determines the importance of the information provided by the stations to conduct the prediction process and a structure that allows for the implementation of an end-to-end learning scheme and that can be interpreted after training. Through experiments in air-quality prediction and solar irradiance forecasting, we show that the proposed model is simple but effective to solve time-series prediction problems in multisation environments compared with other data fusion techniques.