Error correction for locally repairable codes from reducible algebraic curves
"For some situations in Coding Theory, error decoding up to the minimum distance is unsatisfactory. For these situations, List Decoding, where all vectors closer than a certain distance are returned, is a very useful relaxation. It is especially useful when the code has special properties, like...
- Autores:
-
Díaz Serrano, Juan Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/44964
- Acceso en línea:
- http://hdl.handle.net/1992/44964
- Palabra clave:
- Códigos de Goppa
Curvas algebráicas
Códigos de corrección (Teoría de la información)
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Summary: | "For some situations in Coding Theory, error decoding up to the minimum distance is unsatisfactory. For these situations, List Decoding, where all vectors closer than a certain distance are returned, is a very useful relaxation. It is especially useful when the code has special properties, like being Locally Repairable. In this thesis we will explain the concept of List Decoding along with some of its most important combinatorial results, like the Johnson Bound. Then, we will apply this concept to a family of Locally Repairable Codes, focusing on the tightness of the bounds."--Tomado del Formato de Documento de Grado. |
---|