Error correction for locally repairable codes from reducible algebraic curves

"For some situations in Coding Theory, error decoding up to the minimum distance is unsatisfactory. For these situations, List Decoding, where all vectors closer than a certain distance are returned, is a very useful relaxation. It is especially useful when the code has special properties, like...

Full description

Autores:
Díaz Serrano, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/44964
Acceso en línea:
http://hdl.handle.net/1992/44964
Palabra clave:
Códigos de Goppa
Curvas algebráicas
Códigos de corrección (Teoría de la información)
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:"For some situations in Coding Theory, error decoding up to the minimum distance is unsatisfactory. For these situations, List Decoding, where all vectors closer than a certain distance are returned, is a very useful relaxation. It is especially useful when the code has special properties, like being Locally Repairable. In this thesis we will explain the concept of List Decoding along with some of its most important combinatorial results, like the Johnson Bound. Then, we will apply this concept to a family of Locally Repairable Codes, focusing on the tightness of the bounds."--Tomado del Formato de Documento de Grado.