A metaheuristic approach for correlated random vector generation

The generation of correlated random variables is relevant in the stochastic simulation of financial and manufacturing systems, among many other applications. The generally accepted techniques to generate correlated multivariate observations rely on the mathematical attributes of the probability dens...

Full description

Autores:
Hurtado Medina, Edgard Mauricio
Guaje Acosta, Oscar Orlando
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/44349
Acceso en línea:
http://hdl.handle.net/1992/44349
Palabra clave:
Correlación (Estadística) - Investigaciones
Generador de números aleatorios - Métodos de simulación - Investigaciones
Optimización matemática - Investigaciones
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:The generation of correlated random variables is relevant in the stochastic simulation of financial and manufacturing systems, among many other applications. The generally accepted techniques to generate correlated multivariate observations rely on the mathematical attributes of the probability density functions of the random variables. In this paper, we propose a new approach based on Iterated Local Search (ILS) that induces a desired correlation structure to multivariate random data independent of the probability density function of the input variables. The proposed methodology improves the quality of the results found by the Iman and Conover method - currently used in commercial simulators such as Crystal Ball - at a low computational cost.