Prediction of difficulty for video-based learning materials : an initial approach

This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can hav...

Full description

Autores:
Venegas Bernal, Tomás Felipe
Lovera Lozano, Juan Manuel Alberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/45204
Acceso en línea:
http://hdl.handle.net/1992/45204
Palabra clave:
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_2972cf4a92be693e726d880d426ea88e
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/45204
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Prediction of difficulty for video-based learning materials : an initial approach
title Prediction of difficulty for video-based learning materials : an initial approach
spellingShingle Prediction of difficulty for video-based learning materials : an initial approach
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
title_short Prediction of difficulty for video-based learning materials : an initial approach
title_full Prediction of difficulty for video-based learning materials : an initial approach
title_fullStr Prediction of difficulty for video-based learning materials : an initial approach
title_full_unstemmed Prediction of difficulty for video-based learning materials : an initial approach
title_sort Prediction of difficulty for video-based learning materials : an initial approach
dc.creator.fl_str_mv Venegas Bernal, Tomás Felipe
Lovera Lozano, Juan Manuel Alberto
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
Cardozo Álvarez, Nicolás
dc.contributor.author.none.fl_str_mv Venegas Bernal, Tomás Felipe
Lovera Lozano, Juan Manuel Alberto
dc.contributor.jury.none.fl_str_mv Takahashi Rodríguez, Silvia
dc.subject.armarc.es_CO.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
topic Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can have and extract the domains' features. After that, we introduce a data recollection platform that is used to obtain video class labels. We later treat this problem as a binary class problem using majority vote and use SMOTE to address class imbalance. We then use supervised learning algorithms to build difficulty prediction models. Later we perform experiments to determine the best feature subset and best algorithm to solve the problem. Finally, we obtain a prediction model using Random Forest which has an average accuracy of 90.3%.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-09-03T15:52:17Z
dc.date.available.none.fl_str_mv 2020-09-03T15:52:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/45204
dc.identifier.pdf.none.fl_str_mv u826885.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/45204
identifier_str_mv u826885.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 57 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e8811f5f-87aa-4a3b-989b-779688a25325/download
https://repositorio.uniandes.edu.co/bitstreams/48bb17cc-e965-4031-b07f-c3142874e09b/download
https://repositorio.uniandes.edu.co/bitstreams/f75dffbd-7dbf-417a-a514-23cd18695cd4/download
bitstream.checksum.fl_str_mv 4b52d145bf88fdb2c340949f66ca7127
da5c52dcba4c57b431160efde93af17f
e7a5f0bca7f1461b7d4c79005da57171
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133803637866496
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Manrique Piramanrique, Rubén Francisco780bf4c6-40f7-4348-89f8-cc2ee976a0be500Cardozo Álvarez, Nicolásvirtual::777-1Venegas Bernal, Tomás Felipe7e9bc752-7bd6-4ec8-a186-30c52f84ff1c500Lovera Lozano, Juan Manuel Albertodc12fdfd-0810-43ba-9738-4ba9237cc61c500Takahashi Rodríguez, Silvia2020-09-03T15:52:17Z2020-09-03T15:52:17Z2018http://hdl.handle.net/1992/45204u826885.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can have and extract the domains' features. After that, we introduce a data recollection platform that is used to obtain video class labels. We later treat this problem as a binary class problem using majority vote and use SMOTE to address class imbalance. We then use supervised learning algorithms to build difficulty prediction models. Later we perform experiments to determine the best feature subset and best algorithm to solve the problem. Finally, we obtain a prediction model using Random Forest which has an average accuracy of 90.3%."Este trabajo pretende ser una primera aproximación para la predicción de dificultad de videos educativos basado en aprendizaje de máquina. Primero, se analizan las posibles características que se pueden extraer de los videos educativos y se propone un esquema de 7 dominios de estas características. Después de esto, se introduce una plataforma de recolección de datos que se utiliza para obtener etiquetas de dificultad para los videos. Más tarde, se trata el problema como un problema de clase binaria utilizando la técnica de voto mayoritario y SMOTE para abordar el desequilibrio de clases. Luego se usa algoritmos de aprendizaje supervisado para construir modelos de predicción de dificultad. Más tarde se realizan experimentos para determinar el mejor subconjunto de características y el mejor algoritmo para resolver el problema. Finalmente, se obtiene un modelo de predicción utilizando Random Forest que tiene una precisión (accuracy) promedio de 90.3%."--Tomado del Formato de Documento de Grado.Ingeniero de Sistemas y ComputaciónPregrado57 hojasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y Computacióninstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPrediction of difficulty for video-based learning materials : an initial approachTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAprendizaje automático (Inteligencia artificial)Inteligencia artificialAlgoritmos (Computadores)IngenieríaPublicationhttps://scholar.google.es/citations?user=3iTzjQsAAAAJvirtual::777-10000-0002-1094-9952virtual::777-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::777-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::777-1TEXTu826885.pdf.txtu826885.pdf.txtExtracted texttext/plain98071https://repositorio.uniandes.edu.co/bitstreams/e8811f5f-87aa-4a3b-989b-779688a25325/download4b52d145bf88fdb2c340949f66ca7127MD54ORIGINALu826885.pdfapplication/pdf2376930https://repositorio.uniandes.edu.co/bitstreams/48bb17cc-e965-4031-b07f-c3142874e09b/downloadda5c52dcba4c57b431160efde93af17fMD51THUMBNAILu826885.pdf.jpgu826885.pdf.jpgIM Thumbnailimage/jpeg7367https://repositorio.uniandes.edu.co/bitstreams/f75dffbd-7dbf-417a-a514-23cd18695cd4/downloade7a5f0bca7f1461b7d4c79005da57171MD551992/45204oai:repositorio.uniandes.edu.co:1992/452042024-03-13 11:48:14.709http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co