Prediction of difficulty for video-based learning materials : an initial approach
This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can hav...
- Autores:
-
Venegas Bernal, Tomás Felipe
Lovera Lozano, Juan Manuel Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45204
- Acceso en línea:
- http://hdl.handle.net/1992/45204
- Palabra clave:
- Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_2972cf4a92be693e726d880d426ea88e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45204 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Prediction of difficulty for video-based learning materials : an initial approach |
title |
Prediction of difficulty for video-based learning materials : an initial approach |
spellingShingle |
Prediction of difficulty for video-based learning materials : an initial approach Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) Ingeniería |
title_short |
Prediction of difficulty for video-based learning materials : an initial approach |
title_full |
Prediction of difficulty for video-based learning materials : an initial approach |
title_fullStr |
Prediction of difficulty for video-based learning materials : an initial approach |
title_full_unstemmed |
Prediction of difficulty for video-based learning materials : an initial approach |
title_sort |
Prediction of difficulty for video-based learning materials : an initial approach |
dc.creator.fl_str_mv |
Venegas Bernal, Tomás Felipe Lovera Lozano, Juan Manuel Alberto |
dc.contributor.advisor.none.fl_str_mv |
Manrique Piramanrique, Rubén Francisco Cardozo Álvarez, Nicolás |
dc.contributor.author.none.fl_str_mv |
Venegas Bernal, Tomás Felipe Lovera Lozano, Juan Manuel Alberto |
dc.contributor.jury.none.fl_str_mv |
Takahashi Rodríguez, Silvia |
dc.subject.armarc.es_CO.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) |
topic |
Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can have and extract the domains' features. After that, we introduce a data recollection platform that is used to obtain video class labels. We later treat this problem as a binary class problem using majority vote and use SMOTE to address class imbalance. We then use supervised learning algorithms to build difficulty prediction models. Later we perform experiments to determine the best feature subset and best algorithm to solve the problem. Finally, we obtain a prediction model using Random Forest which has an average accuracy of 90.3%. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T15:52:17Z |
dc.date.available.none.fl_str_mv |
2020-09-03T15:52:17Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45204 |
dc.identifier.pdf.none.fl_str_mv |
u826885.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45204 |
identifier_str_mv |
u826885.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
57 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/e8811f5f-87aa-4a3b-989b-779688a25325/download https://repositorio.uniandes.edu.co/bitstreams/48bb17cc-e965-4031-b07f-c3142874e09b/download https://repositorio.uniandes.edu.co/bitstreams/f75dffbd-7dbf-417a-a514-23cd18695cd4/download |
bitstream.checksum.fl_str_mv |
4b52d145bf88fdb2c340949f66ca7127 da5c52dcba4c57b431160efde93af17f e7a5f0bca7f1461b7d4c79005da57171 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133803637866496 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Manrique Piramanrique, Rubén Francisco780bf4c6-40f7-4348-89f8-cc2ee976a0be500Cardozo Álvarez, Nicolásvirtual::777-1Venegas Bernal, Tomás Felipe7e9bc752-7bd6-4ec8-a186-30c52f84ff1c500Lovera Lozano, Juan Manuel Albertodc12fdfd-0810-43ba-9738-4ba9237cc61c500Takahashi Rodríguez, Silvia2020-09-03T15:52:17Z2020-09-03T15:52:17Z2018http://hdl.handle.net/1992/45204u826885.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work is intended to have an initial approach towards the video-based learning materials difficulty prediction using machine learning techniques. First, we address the possible features that can be extracted from the video resources, propose a scheme of 7 domains of features that a video can have and extract the domains' features. After that, we introduce a data recollection platform that is used to obtain video class labels. We later treat this problem as a binary class problem using majority vote and use SMOTE to address class imbalance. We then use supervised learning algorithms to build difficulty prediction models. Later we perform experiments to determine the best feature subset and best algorithm to solve the problem. Finally, we obtain a prediction model using Random Forest which has an average accuracy of 90.3%."Este trabajo pretende ser una primera aproximación para la predicción de dificultad de videos educativos basado en aprendizaje de máquina. Primero, se analizan las posibles características que se pueden extraer de los videos educativos y se propone un esquema de 7 dominios de estas características. Después de esto, se introduce una plataforma de recolección de datos que se utiliza para obtener etiquetas de dificultad para los videos. Más tarde, se trata el problema como un problema de clase binaria utilizando la técnica de voto mayoritario y SMOTE para abordar el desequilibrio de clases. Luego se usa algoritmos de aprendizaje supervisado para construir modelos de predicción de dificultad. Más tarde se realizan experimentos para determinar el mejor subconjunto de características y el mejor algoritmo para resolver el problema. Finalmente, se obtiene un modelo de predicción utilizando Random Forest que tiene una precisión (accuracy) promedio de 90.3%."--Tomado del Formato de Documento de Grado.Ingeniero de Sistemas y ComputaciónPregrado57 hojasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y Computacióninstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPrediction of difficulty for video-based learning materials : an initial approachTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAprendizaje automático (Inteligencia artificial)Inteligencia artificialAlgoritmos (Computadores)IngenieríaPublicationhttps://scholar.google.es/citations?user=3iTzjQsAAAAJvirtual::777-10000-0002-1094-9952virtual::777-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::777-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::777-1TEXTu826885.pdf.txtu826885.pdf.txtExtracted texttext/plain98071https://repositorio.uniandes.edu.co/bitstreams/e8811f5f-87aa-4a3b-989b-779688a25325/download4b52d145bf88fdb2c340949f66ca7127MD54ORIGINALu826885.pdfapplication/pdf2376930https://repositorio.uniandes.edu.co/bitstreams/48bb17cc-e965-4031-b07f-c3142874e09b/downloadda5c52dcba4c57b431160efde93af17fMD51THUMBNAILu826885.pdf.jpgu826885.pdf.jpgIM Thumbnailimage/jpeg7367https://repositorio.uniandes.edu.co/bitstreams/f75dffbd-7dbf-417a-a514-23cd18695cd4/downloade7a5f0bca7f1461b7d4c79005da57171MD551992/45204oai:repositorio.uniandes.edu.co:1992/452042024-03-13 11:48:14.709http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |