Comparación de métodos de identificación de modelos ARMA

En el modelamiento de series de tiempo, la identificación de las órdenes de un modelo es crucial, porque es la base para el entendimiento de la serie y para el pronóstico. En los últimos treinta años han surgido métodos que se basan en patrones de la función de autocorrelación o en los valores propi...

Full description

Autores:
Gómez Castrillón, William Alexander
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/13309
Acceso en línea:
http://hdl.handle.net/1992/13309
Palabra clave:
Análisis de regresión - Investigaciones
Análisis de series de tiempo - Investigaciones
Probabilidades - Investigaciones
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:En el modelamiento de series de tiempo, la identificación de las órdenes de un modelo es crucial, porque es la base para el entendimiento de la serie y para el pronóstico. En los últimos treinta años han surgido métodos que se basan en patrones de la función de autocorrelación o en los valores propios de la matriz de covarianzas. Este artículo compara seis de ellos, evaluando su identificación de series que siguen modelos Auto-Regresivos y ARMA. Para AR puros los mejores métodos de identificación fueron, en su orden, ESACF, 'SCAN a' y AIC; para modelos ARMA no hubo ningún modelo que sobresaliera, el máximo porcentaje de identificación correcta fue de 4.5% para el método AIC. El desempeño general fue bastante pobre, el porcentaje de identificación correcta promedio fue de 20% y 2% para los modelos AR y ARMA respectivamente.