Deep learning-based garbage bags and potholes detection model using Raspberry Pi
Given the current process for garbage collection and road maintenance, due to gaps in the pavement, in addition to the non-compliance of citizens with the norms established by entities for these services; city streets are becoming dirtier and less passable, affecting transportation. The main problem...
- Autores:
-
Palacios Sánchez, Juan Felipe
Vitery Gómez, Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/53500
- Acceso en línea:
- http://hdl.handle.net/1992/53500
- Palabra clave:
- Ciudades inteligentes
Redes neuronales (Computadores)
Raspberry Pi (Computadora)
Aprendizaje automático (Inteligencia artificial)
Recolección de basuras
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_273cad04b23223a5b47c20456141b48e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/53500 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
title |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
spellingShingle |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi Ciudades inteligentes Redes neuronales (Computadores) Raspberry Pi (Computadora) Aprendizaje automático (Inteligencia artificial) Recolección de basuras Ingeniería |
title_short |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
title_full |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
title_fullStr |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
title_full_unstemmed |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
title_sort |
Deep learning-based garbage bags and potholes detection model using Raspberry Pi |
dc.creator.fl_str_mv |
Palacios Sánchez, Juan Felipe Vitery Gómez, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Trujillo, Luis Felipe |
dc.contributor.author.none.fl_str_mv |
Palacios Sánchez, Juan Felipe Vitery Gómez, Santiago |
dc.contributor.jury.none.fl_str_mv |
Bressan, Michael |
dc.subject.armarc.none.fl_str_mv |
Ciudades inteligentes Redes neuronales (Computadores) Raspberry Pi (Computadora) Aprendizaje automático (Inteligencia artificial) Recolección de basuras |
topic |
Ciudades inteligentes Redes neuronales (Computadores) Raspberry Pi (Computadora) Aprendizaje automático (Inteligencia artificial) Recolección de basuras Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Given the current process for garbage collection and road maintenance, due to gaps in the pavement, in addition to the non-compliance of citizens with the norms established by entities for these services; city streets are becoming dirtier and less passable, affecting transportation. The main problem is that the entities in charge of these tasks do not have daily updated information. In the proposed article, a model for the detection of garbage bags and holes based on artificial vision and deep learning is proposed, which collects geographic information from garbage bags and holes present in the streets of a city. From this information a heat map is generated, which can be provided to the companies in charge of cleaning and maintaining the streets, and contribute to the progress towards a smart city. The behavior of the model has been explored and tested using a Raspberry Pi in real time, and the model has been shown to be fully functional and efficient. The overall performance of the proposed model has been achieved in terms of accuracy, precision and F1-score as 83%, 91% and 82% respectively. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-03T16:25:08Z |
dc.date.available.none.fl_str_mv |
2021-11-03T16:25:08Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/53500 |
dc.identifier.pdf.none.fl_str_mv |
24475.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/53500 |
identifier_str_mv |
24475.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/104057b2-9cef-4fc1-8e9b-c8803b018c0f/download https://repositorio.uniandes.edu.co/bitstreams/ee0f0e18-c1d5-445d-9c5d-dfe724b9d291/download https://repositorio.uniandes.edu.co/bitstreams/6036f3ae-7afa-4371-a8e2-4538344f4daf/download |
bitstream.checksum.fl_str_mv |
6d9f026591212ef428d2df893068e352 924bdf03d7e3ee8fb8e36c468f3a4d34 ac62169322f2085f0877c2108c53acf9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134048432128000 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Trujillo, Luis Felipevirtual::15651-1Palacios Sánchez, Juan Felipee7652d2e-50b1-4fae-95ca-697f5b1a50fc400Vitery Gómez, Santiago10f6a457-2871-4c17-8073-4c7cf61a8ada400Bressan, Michael2021-11-03T16:25:08Z2021-11-03T16:25:08Z2021http://hdl.handle.net/1992/5350024475.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Given the current process for garbage collection and road maintenance, due to gaps in the pavement, in addition to the non-compliance of citizens with the norms established by entities for these services; city streets are becoming dirtier and less passable, affecting transportation. The main problem is that the entities in charge of these tasks do not have daily updated information. In the proposed article, a model for the detection of garbage bags and holes based on artificial vision and deep learning is proposed, which collects geographic information from garbage bags and holes present in the streets of a city. From this information a heat map is generated, which can be provided to the companies in charge of cleaning and maintaining the streets, and contribute to the progress towards a smart city. The behavior of the model has been explored and tested using a Raspberry Pi in real time, and the model has been shown to be fully functional and efficient. The overall performance of the proposed model has been achieved in terms of accuracy, precision and F1-score as 83%, 91% and 82% respectively.Las calles de las ciudades se están volviendo más sucias y menos transitables debido al proceso de recolección de basuras y mantenimiento vial que se realiza actualmente. El principal problema es que las entidades encargadas de realizar estos procesos no tienen información actualizada diariamente. En el siguiente artículo se propone un modelo de detección de bolsas de basuras y huecos basado en visión artificial y deep learning, que recolecta información geográfica los objetos que se detectan. Con esta información, se genera un mapa de calor de las ciudades, que puede ser de gran utilidad para las compañías encargadas de hacer limpieza y mantenimiento de las calles, contribuyendo al progreso una ciudad inteligente. El desempeño del modelo se midió usando una Raspberry Pi, mostrando ser funcional y eficiente. La evaluación del modelo se realizó teniendo en cuenta las métricas accuracy, precisión y f1-score, obteniendo 83%, 91% y 82% respectivamente.Ingeniero ElectrónicoPregrado14 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaDeep learning-based garbage bags and potholes detection model using Raspberry PiTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCiudades inteligentesRedes neuronales (Computadores)Raspberry Pi (Computadora)Aprendizaje automático (Inteligencia artificial)Recolección de basurasIngeniería201616389Publicationhttps://scholar.google.es/citations?user=4TGvo8AAAAJvirtual::15651-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000802506virtual::15651-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::15651-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::15651-1THUMBNAIL24475.pdf.jpg24475.pdf.jpgIM Thumbnailimage/jpeg22120https://repositorio.uniandes.edu.co/bitstreams/104057b2-9cef-4fc1-8e9b-c8803b018c0f/download6d9f026591212ef428d2df893068e352MD55ORIGINAL24475.pdfapplication/pdf8087171https://repositorio.uniandes.edu.co/bitstreams/ee0f0e18-c1d5-445d-9c5d-dfe724b9d291/download924bdf03d7e3ee8fb8e36c468f3a4d34MD51TEXT24475.pdf.txt24475.pdf.txtExtracted texttext/plain23520https://repositorio.uniandes.edu.co/bitstreams/6036f3ae-7afa-4371-a8e2-4538344f4daf/downloadac62169322f2085f0877c2108c53acf9MD541992/53500oai:repositorio.uniandes.edu.co:1992/535002024-03-13 15:31:06.138https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |