La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad

La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación...

Full description

Autores:
González López, Olga Carolina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73882
Acceso en línea:
https://hdl.handle.net/1992/73882
Palabra clave:
Biodiversidad
Evolución
Teoría de juegos
Teoría de juegos evolutiva
Dominancia cíclica
Proceso de Moran
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_25774cd04179f3c06b6f2a2a5585298f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73882
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
dc.title.alternative.eng.fl_str_mv The relevance of the rock-paper-scissors model for biodiversity preservation.
title La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
spellingShingle La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
Biodiversidad
Evolución
Teoría de juegos
Teoría de juegos evolutiva
Dominancia cíclica
Proceso de Moran
Física
title_short La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
title_full La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
title_fullStr La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
title_full_unstemmed La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
title_sort La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
dc.creator.fl_str_mv González López, Olga Carolina
dc.contributor.advisor.none.fl_str_mv Pedraza Leal, Juan Manuel
dc.contributor.author.none.fl_str_mv González López, Olga Carolina
dc.contributor.jury.none.fl_str_mv Forero Shelton, Antonio Manu
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Biofísica
dc.subject.keyword.spa.fl_str_mv Biodiversidad
Evolución
Teoría de juegos
Teoría de juegos evolutiva
Dominancia cíclica
Proceso de Moran
topic Biodiversidad
Evolución
Teoría de juegos
Teoría de juegos evolutiva
Dominancia cíclica
Proceso de Moran
Física
dc.subject.themes.spa.fl_str_mv Física
description La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación de la biodiversidad, evaluando la probabilidad de fijación de especies en este juego mediante enfoques analíticos y simulaciones con nashpy. Se derivaron conclusiones importantes del análisis computacional, destacando la influencia de la estabilidad del equilibrio de Nash en la fijación de especies. La comparación entre modelos analíticos y computacionales reveló una mayor precisión en este último para intensidades de selección bajas. Además, se exploraron fenómenos como la deriva genética, la variabilidad en los pagos y la relación entre estabilidad del juego y propagación del ruido. Un segundo análisis reprodujo resultados experimentales, demostrando la generación de ciclos de dominancia poblacional en presencia de flujos constantes de individuos con distintas estrategias. La estabilidad del equilibrio de juego influyó en periodos de oscilación más prolongados, y la ventaja inicial de una especie no afectó la coexistencia. Se sugirió la existencia de competencia intraespecífica, similar al modelo de Lotka-Volterra.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-05T13:16:38Z
dc.date.available.none.fl_str_mv 2024-02-05T13:16:38Z
dc.date.issued.none.fl_str_mv 2024-01-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73882
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73882
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Q. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren, “Stochastic evolution dynamic of the rock–scissors–paper game based on a quasi birth and death process,” Scientific Reports, vol. 6, no. 1, 2016.
M. Tiller, “Lotka-volterra systems.”
M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, 2006.
M. A. Nowak, C. E. Tarnita, and T. Antal, “Evolutionary dynamics in structured populations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 19–30, 2010.
M. A. Nowak, “Five rules for the evolution of cooperation,” Science, vol. 314, no. 5805, pp. 1560–1563, 2006.
S. Mukherjee and B. L. Bassler, “Bacterial quorum sensing in complex and dynamically changing environments,” Nature Reviews Microbiology, vol. 17, no. 6, p. 371–382, 2019.
T. Verma and A. K. Gupta, “Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations,” Chaos, Solitons and Fractals, vol. 153, p. 111538, 2021.
C. A. Correa Ayram, M. E. Mendoza, A. Etter, and D. R. P. Salicrup, “Habitat connectivity in biodiversity conservation: A review of recent studies and applications,” Progress in Physical Geography, vol. 40, no. 1, pp. 7–37, 2016.
B. Sinervo and C. Lively, “The rock-paper-scissors game and the evolution of alternative male strategies,” Nature, vol. 380, pp. 240–243, 03 1996.
J. Park, “Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction,” Europhysics Letters, vol. 126, p. 38004, jun 2019.
G. J. Bakus, “Chemical defense mechanisms on the great barrier reef, australia,” Science, vol. 211, no. 4481, pp. 497–499, 1981.
C. E. Paquin and J. Adams, “Relative fitness can decrease in evolving asexual populations of s. cerevisiae,” Nature, vol. 306, no. 5941, p. 368–371, 1983.
B. C. Kirkup and M. A. Riley, “Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo,” Nature, vol. 428, no. 6981, p. 412–414, 2004.
E. Cascales, S. K. Buchanan, D. Duché, C. Kleanthous, R. Lloubès, K. Postle, M. Riley, S. Slatin, and D. Cavard, “Colicin biology,” Microbiology and Molecular Biology Reviews, vol. 71, no. 1, pp. 158–229, 2007.
B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, “Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors,” Nature, vol. 418, no. 6894, p. 171–174, 2002.
A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic dynamics of invasion and fixation,” Phys. Rev. E, vol. 74, p. 011909, Jul 2006.
X. Liu, Q. Pan, Y. Kang, and M. He, “Fixation probabilities in evolutionary games with the moran and fermi processes,” Journal of Theoretical Biology, vol. 364, pp. 242– 248, 2015.
J. M. Pedraza, Estocasticidad en procesos moleculares. 2018.
V. Knight and J. Campbell, “Nashpy: A python library for the computation of nash equilibria,” Journal of Open Source Software, vol. 3, no. 30, p. 904, 2018.
J. C. Claussen and A. Traulsen, “Cyclic dominance and biodiversity in well-mixed populations,” Physical Review Letters, vol. 100, feb 2008.
R. West and M. Mobilia, “Fixation properties of rock-paper-scissors games in fluctuating populations,” Journal of Theoretical Biology, vol. 491, p. 110135, 2020.
W. Norman, “Evolutionary game dynamics and the moran model,” 2020.
A. Traulsen, J. C. Claussen, and C. Hauert, “Stochastic differential equations for evolutionary dynamics with demographic noise and mutations,” Physical Review E, vol. 85, Apr 2012.
M. H. Mohd and J. Park, “The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics,” Chaos, Solitons and Fractals, vol. 153, p. 111579, 2021.
S. Venkat and M. Pleimling, “Mobility and asymmetry effects in one-dimensional rock-paper-scissors games,” Physical Review E, vol. 81, no. 2, 2010.
E. M. Ferreira and A. G. Neves, “Fixation probabilities for the moran process with three or more strategies: General and coupling results,” Journal of Mathematical Biology, vol. 81, no. 1, p. 277–314, 2020.
Nature-Education, “Hardy-weinberg equilibrium,” 2014.
R. Kliman, B. Sheehy, B, and J. Schultz, “Genetic drift and effective population size,” 2008.
W. P. Barreto, F. M. Marquitti, and M. A. de Aguiar, “A genetic approach to the rock-paper-scissors game,” Journal of Theoretical Biology, vol. 421, pp. 146–152, 2017.
W. Hu, G. Zhang, H. Tian, and Z. Wang, “Chaotic dynamics in asymmetric rock-paper-scissors games,” IEEE Access, vol. PP, pp. 1–1, 11 2019.
T.-J. Feng, J. Mei, R.-W.Wang, S. Lessard, Y. Tao, and X.-D. Zheng, “Noise-induced quasi-heteroclinic cycle in a rock–paper–scissors game with random payoffs,” Dynamic Games and Applications, vol. 12, no. 4, p. 1280–1292, 2022.
R. M. May and R. H. M. Arthur, “Niche overlap as a function of environmental variability,” Proceedings of the National Academy of Sciences, vol. 69, no. 5, pp. 1109–1113, 1972.
R. M. May, Stability and complexity in model ecosystems, vol. 1. Princeton university press, 2019.
M. J. Liao, M. O. Din, L. Tsimring, and J. Hasty, “Rock-paper-scissors: Engineered population dynamics increase genetic stability,” Science, vol. 365, no. 6457, pp. 1045–1049, 2019.
M. K. Gavina, T. Tahara, K.-i. Tainaka, H. Ito, S. Morita, G. Ichinose, T. Okabe, T. Togashi, T. Nagatani, and J. Yoshimura, “Multi-species coexistence in lotka-volterra competitive systems with crowding effects,” Scientific Reports, vol. 8, no. 1, 2018.
J. Paulsson, “Multileveled Selection on Plasmid Replication,” Genetics, vol. 161, pp. 1373–1384, 08 2002.
G. del Solar and M. Espinosa, “Plasmid copy number control: An ever-growing story,” Molecular microbiology, Jan 2002.
M. A. Brockhurst, M. E. Hochberg, T. Bell, and A. Buckling, “Character displacement promotes cooperation in bacterial biofilms,” Current Biology, vol. 16, p. 2030–2034, Oct 2006.
D. Fudenberg, M. A. Nowak, C. Taylor, and L. A. Imhof, “Evolutionary game dynamics in finite populations with strong selection and weak mutation,” Theoretical Population Biology, vol. 70, p. 352–363, Aug 2006.
W. H. Sandholm, Economic learning and social evolution: Population games and evolutionary dynamics. MIT Press, 2011.
B. C. McCannon, “Rock paper scissors,” Journal of Economics, vol. 92, p. 67–88, Jul 2007.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 57 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ef422d51-6a76-4f87-89d5-10de40068ec3/download
https://repositorio.uniandes.edu.co/bitstreams/a552b9fd-8765-4141-986d-c05ac85c3a37/download
https://repositorio.uniandes.edu.co/bitstreams/4aed7064-9284-488d-807c-7be96d771e6d/download
https://repositorio.uniandes.edu.co/bitstreams/ef9d4759-b389-4ba7-9067-005e67c61d2b/download
https://repositorio.uniandes.edu.co/bitstreams/fc6bfa1c-00d7-4e5a-88ec-230e0c627ed4/download
https://repositorio.uniandes.edu.co/bitstreams/a888d2f4-57a3-49b7-966c-76116da33112/download
https://repositorio.uniandes.edu.co/bitstreams/37ec27d7-82ed-4a2e-8bac-386f50fcac54/download
https://repositorio.uniandes.edu.co/bitstreams/58c50537-8dbf-4d89-89f4-cb42215274b3/download
bitstream.checksum.fl_str_mv c7b880deffc71e15eed6a66b42b17ac8
b32d4a34023ad42abb4f53a30893afdc
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
e7f88cd8dff39691924d2ac52be9b050
6287cf8acf1cd119da0189c03a416852
3f6f587d8daf37d2a444606320f21484
563d03a6a7b0ad3823342e280feb3354
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390313586196480
spelling Pedraza Leal, Juan ManuelGonzález López, Olga CarolinaForero Shelton, Antonio ManuFacultad de Ciencias::Biofísica2024-02-05T13:16:38Z2024-02-05T13:16:38Z2024-01-02https://hdl.handle.net/1992/73882instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación de la biodiversidad, evaluando la probabilidad de fijación de especies en este juego mediante enfoques analíticos y simulaciones con nashpy. Se derivaron conclusiones importantes del análisis computacional, destacando la influencia de la estabilidad del equilibrio de Nash en la fijación de especies. La comparación entre modelos analíticos y computacionales reveló una mayor precisión en este último para intensidades de selección bajas. Además, se exploraron fenómenos como la deriva genética, la variabilidad en los pagos y la relación entre estabilidad del juego y propagación del ruido. Un segundo análisis reprodujo resultados experimentales, demostrando la generación de ciclos de dominancia poblacional en presencia de flujos constantes de individuos con distintas estrategias. La estabilidad del equilibrio de juego influyó en periodos de oscilación más prolongados, y la ventaja inicial de una especie no afectó la coexistencia. Se sugirió la existencia de competencia intraespecífica, similar al modelo de Lotka-Volterra.FísicoPregradoBiología de sistemas57 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidadThe relevance of the rock-paper-scissors model for biodiversity preservation.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBiodiversidadEvoluciónTeoría de juegosTeoría de juegos evolutivaDominancia cíclicaProceso de MoranFísicaQ. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren, “Stochastic evolution dynamic of the rock–scissors–paper game based on a quasi birth and death process,” Scientific Reports, vol. 6, no. 1, 2016.M. Tiller, “Lotka-volterra systems.”M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, 2006.M. A. Nowak, C. E. Tarnita, and T. Antal, “Evolutionary dynamics in structured populations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 19–30, 2010.M. A. Nowak, “Five rules for the evolution of cooperation,” Science, vol. 314, no. 5805, pp. 1560–1563, 2006.S. Mukherjee and B. L. Bassler, “Bacterial quorum sensing in complex and dynamically changing environments,” Nature Reviews Microbiology, vol. 17, no. 6, p. 371–382, 2019.T. Verma and A. K. Gupta, “Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations,” Chaos, Solitons and Fractals, vol. 153, p. 111538, 2021.C. A. Correa Ayram, M. E. Mendoza, A. Etter, and D. R. P. Salicrup, “Habitat connectivity in biodiversity conservation: A review of recent studies and applications,” Progress in Physical Geography, vol. 40, no. 1, pp. 7–37, 2016.B. Sinervo and C. Lively, “The rock-paper-scissors game and the evolution of alternative male strategies,” Nature, vol. 380, pp. 240–243, 03 1996.J. Park, “Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction,” Europhysics Letters, vol. 126, p. 38004, jun 2019.G. J. Bakus, “Chemical defense mechanisms on the great barrier reef, australia,” Science, vol. 211, no. 4481, pp. 497–499, 1981.C. E. Paquin and J. Adams, “Relative fitness can decrease in evolving asexual populations of s. cerevisiae,” Nature, vol. 306, no. 5941, p. 368–371, 1983.B. C. Kirkup and M. A. Riley, “Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo,” Nature, vol. 428, no. 6981, p. 412–414, 2004.E. Cascales, S. K. Buchanan, D. Duché, C. Kleanthous, R. Lloubès, K. Postle, M. Riley, S. Slatin, and D. Cavard, “Colicin biology,” Microbiology and Molecular Biology Reviews, vol. 71, no. 1, pp. 158–229, 2007.B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, “Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors,” Nature, vol. 418, no. 6894, p. 171–174, 2002.A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic dynamics of invasion and fixation,” Phys. Rev. E, vol. 74, p. 011909, Jul 2006.X. Liu, Q. Pan, Y. Kang, and M. He, “Fixation probabilities in evolutionary games with the moran and fermi processes,” Journal of Theoretical Biology, vol. 364, pp. 242– 248, 2015.J. M. Pedraza, Estocasticidad en procesos moleculares. 2018.V. Knight and J. Campbell, “Nashpy: A python library for the computation of nash equilibria,” Journal of Open Source Software, vol. 3, no. 30, p. 904, 2018.J. C. Claussen and A. Traulsen, “Cyclic dominance and biodiversity in well-mixed populations,” Physical Review Letters, vol. 100, feb 2008.R. West and M. Mobilia, “Fixation properties of rock-paper-scissors games in fluctuating populations,” Journal of Theoretical Biology, vol. 491, p. 110135, 2020.W. Norman, “Evolutionary game dynamics and the moran model,” 2020.A. Traulsen, J. C. Claussen, and C. Hauert, “Stochastic differential equations for evolutionary dynamics with demographic noise and mutations,” Physical Review E, vol. 85, Apr 2012.M. H. Mohd and J. Park, “The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics,” Chaos, Solitons and Fractals, vol. 153, p. 111579, 2021.S. Venkat and M. Pleimling, “Mobility and asymmetry effects in one-dimensional rock-paper-scissors games,” Physical Review E, vol. 81, no. 2, 2010.E. M. Ferreira and A. G. Neves, “Fixation probabilities for the moran process with three or more strategies: General and coupling results,” Journal of Mathematical Biology, vol. 81, no. 1, p. 277–314, 2020.Nature-Education, “Hardy-weinberg equilibrium,” 2014.R. Kliman, B. Sheehy, B, and J. Schultz, “Genetic drift and effective population size,” 2008.W. P. Barreto, F. M. Marquitti, and M. A. de Aguiar, “A genetic approach to the rock-paper-scissors game,” Journal of Theoretical Biology, vol. 421, pp. 146–152, 2017.W. Hu, G. Zhang, H. Tian, and Z. Wang, “Chaotic dynamics in asymmetric rock-paper-scissors games,” IEEE Access, vol. PP, pp. 1–1, 11 2019.T.-J. Feng, J. Mei, R.-W.Wang, S. Lessard, Y. Tao, and X.-D. Zheng, “Noise-induced quasi-heteroclinic cycle in a rock–paper–scissors game with random payoffs,” Dynamic Games and Applications, vol. 12, no. 4, p. 1280–1292, 2022.R. M. May and R. H. M. Arthur, “Niche overlap as a function of environmental variability,” Proceedings of the National Academy of Sciences, vol. 69, no. 5, pp. 1109–1113, 1972.R. M. May, Stability and complexity in model ecosystems, vol. 1. Princeton university press, 2019.M. J. Liao, M. O. Din, L. Tsimring, and J. Hasty, “Rock-paper-scissors: Engineered population dynamics increase genetic stability,” Science, vol. 365, no. 6457, pp. 1045–1049, 2019.M. K. Gavina, T. Tahara, K.-i. Tainaka, H. Ito, S. Morita, G. Ichinose, T. Okabe, T. Togashi, T. Nagatani, and J. Yoshimura, “Multi-species coexistence in lotka-volterra competitive systems with crowding effects,” Scientific Reports, vol. 8, no. 1, 2018.J. Paulsson, “Multileveled Selection on Plasmid Replication,” Genetics, vol. 161, pp. 1373–1384, 08 2002.G. del Solar and M. Espinosa, “Plasmid copy number control: An ever-growing story,” Molecular microbiology, Jan 2002.M. A. Brockhurst, M. E. Hochberg, T. Bell, and A. Buckling, “Character displacement promotes cooperation in bacterial biofilms,” Current Biology, vol. 16, p. 2030–2034, Oct 2006.D. Fudenberg, M. A. Nowak, C. Taylor, and L. A. Imhof, “Evolutionary game dynamics in finite populations with strong selection and weak mutation,” Theoretical Population Biology, vol. 70, p. 352–363, Aug 2006.W. H. Sandholm, Economic learning and social evolution: Population games and evolutionary dynamics. MIT Press, 2011.B. C. McCannon, “Rock paper scissors,” Journal of Economics, vol. 92, p. 67–88, Jul 2007.201912678PublicationORIGINALLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdfLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdfapplication/pdf3850977https://repositorio.uniandes.edu.co/bitstreams/ef422d51-6a76-4f87-89d5-10de40068ec3/downloadc7b880deffc71e15eed6a66b42b17ac8MD51autorizacion tesis-3.pdfautorizacion tesis-3.pdfHIDEapplication/pdf292142https://repositorio.uniandes.edu.co/bitstreams/a552b9fd-8765-4141-986d-c05ac85c3a37/downloadb32d4a34023ad42abb4f53a30893afdcMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4aed7064-9284-488d-807c-7be96d771e6d/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ef9d4759-b389-4ba7-9067-005e67c61d2b/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.txtLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.txtExtracted texttext/plain94932https://repositorio.uniandes.edu.co/bitstreams/fc6bfa1c-00d7-4e5a-88ec-230e0c627ed4/downloade7f88cd8dff39691924d2ac52be9b050MD55autorizacion tesis-3.pdf.txtautorizacion tesis-3.pdf.txtExtracted texttext/plain2048https://repositorio.uniandes.edu.co/bitstreams/a888d2f4-57a3-49b7-966c-76116da33112/download6287cf8acf1cd119da0189c03a416852MD57THUMBNAILLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.jpgLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.jpgGenerated Thumbnailimage/jpeg7207https://repositorio.uniandes.edu.co/bitstreams/37ec27d7-82ed-4a2e-8bac-386f50fcac54/download3f6f587d8daf37d2a444606320f21484MD56autorizacion tesis-3.pdf.jpgautorizacion tesis-3.pdf.jpgGenerated Thumbnailimage/jpeg10920https://repositorio.uniandes.edu.co/bitstreams/58c50537-8dbf-4d89-89f4-cb42215274b3/download563d03a6a7b0ad3823342e280feb3354MD581992/73882oai:repositorio.uniandes.edu.co:1992/738822024-02-16 15:01:11.064http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K