La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad
La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación...
- Autores:
-
González López, Olga Carolina
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73882
- Acceso en línea:
- https://hdl.handle.net/1992/73882
- Palabra clave:
- Biodiversidad
Evolución
Teoría de juegos
Teoría de juegos evolutiva
Dominancia cíclica
Proceso de Moran
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_25774cd04179f3c06b6f2a2a5585298f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73882 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
dc.title.alternative.eng.fl_str_mv |
The relevance of the rock-paper-scissors model for biodiversity preservation. |
title |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
spellingShingle |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad Biodiversidad Evolución Teoría de juegos Teoría de juegos evolutiva Dominancia cíclica Proceso de Moran Física |
title_short |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
title_full |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
title_fullStr |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
title_full_unstemmed |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
title_sort |
La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidad |
dc.creator.fl_str_mv |
González López, Olga Carolina |
dc.contributor.advisor.none.fl_str_mv |
Pedraza Leal, Juan Manuel |
dc.contributor.author.none.fl_str_mv |
González López, Olga Carolina |
dc.contributor.jury.none.fl_str_mv |
Forero Shelton, Antonio Manu |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Biofísica |
dc.subject.keyword.spa.fl_str_mv |
Biodiversidad Evolución Teoría de juegos Teoría de juegos evolutiva Dominancia cíclica Proceso de Moran |
topic |
Biodiversidad Evolución Teoría de juegos Teoría de juegos evolutiva Dominancia cíclica Proceso de Moran Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación de la biodiversidad, evaluando la probabilidad de fijación de especies en este juego mediante enfoques analíticos y simulaciones con nashpy. Se derivaron conclusiones importantes del análisis computacional, destacando la influencia de la estabilidad del equilibrio de Nash en la fijación de especies. La comparación entre modelos analíticos y computacionales reveló una mayor precisión en este último para intensidades de selección bajas. Además, se exploraron fenómenos como la deriva genética, la variabilidad en los pagos y la relación entre estabilidad del juego y propagación del ruido. Un segundo análisis reprodujo resultados experimentales, demostrando la generación de ciclos de dominancia poblacional en presencia de flujos constantes de individuos con distintas estrategias. La estabilidad del equilibrio de juego influyó en periodos de oscilación más prolongados, y la ventaja inicial de una especie no afectó la coexistencia. Se sugirió la existencia de competencia intraespecífica, similar al modelo de Lotka-Volterra. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-05T13:16:38Z |
dc.date.available.none.fl_str_mv |
2024-02-05T13:16:38Z |
dc.date.issued.none.fl_str_mv |
2024-01-02 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73882 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73882 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Q. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren, “Stochastic evolution dynamic of the rock–scissors–paper game based on a quasi birth and death process,” Scientific Reports, vol. 6, no. 1, 2016. M. Tiller, “Lotka-volterra systems.” M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, 2006. M. A. Nowak, C. E. Tarnita, and T. Antal, “Evolutionary dynamics in structured populations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 19–30, 2010. M. A. Nowak, “Five rules for the evolution of cooperation,” Science, vol. 314, no. 5805, pp. 1560–1563, 2006. S. Mukherjee and B. L. Bassler, “Bacterial quorum sensing in complex and dynamically changing environments,” Nature Reviews Microbiology, vol. 17, no. 6, p. 371–382, 2019. T. Verma and A. K. Gupta, “Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations,” Chaos, Solitons and Fractals, vol. 153, p. 111538, 2021. C. A. Correa Ayram, M. E. Mendoza, A. Etter, and D. R. P. Salicrup, “Habitat connectivity in biodiversity conservation: A review of recent studies and applications,” Progress in Physical Geography, vol. 40, no. 1, pp. 7–37, 2016. B. Sinervo and C. Lively, “The rock-paper-scissors game and the evolution of alternative male strategies,” Nature, vol. 380, pp. 240–243, 03 1996. J. Park, “Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction,” Europhysics Letters, vol. 126, p. 38004, jun 2019. G. J. Bakus, “Chemical defense mechanisms on the great barrier reef, australia,” Science, vol. 211, no. 4481, pp. 497–499, 1981. C. E. Paquin and J. Adams, “Relative fitness can decrease in evolving asexual populations of s. cerevisiae,” Nature, vol. 306, no. 5941, p. 368–371, 1983. B. C. Kirkup and M. A. Riley, “Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo,” Nature, vol. 428, no. 6981, p. 412–414, 2004. E. Cascales, S. K. Buchanan, D. Duché, C. Kleanthous, R. Lloubès, K. Postle, M. Riley, S. Slatin, and D. Cavard, “Colicin biology,” Microbiology and Molecular Biology Reviews, vol. 71, no. 1, pp. 158–229, 2007. B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, “Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors,” Nature, vol. 418, no. 6894, p. 171–174, 2002. A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic dynamics of invasion and fixation,” Phys. Rev. E, vol. 74, p. 011909, Jul 2006. X. Liu, Q. Pan, Y. Kang, and M. He, “Fixation probabilities in evolutionary games with the moran and fermi processes,” Journal of Theoretical Biology, vol. 364, pp. 242– 248, 2015. J. M. Pedraza, Estocasticidad en procesos moleculares. 2018. V. Knight and J. Campbell, “Nashpy: A python library for the computation of nash equilibria,” Journal of Open Source Software, vol. 3, no. 30, p. 904, 2018. J. C. Claussen and A. Traulsen, “Cyclic dominance and biodiversity in well-mixed populations,” Physical Review Letters, vol. 100, feb 2008. R. West and M. Mobilia, “Fixation properties of rock-paper-scissors games in fluctuating populations,” Journal of Theoretical Biology, vol. 491, p. 110135, 2020. W. Norman, “Evolutionary game dynamics and the moran model,” 2020. A. Traulsen, J. C. Claussen, and C. Hauert, “Stochastic differential equations for evolutionary dynamics with demographic noise and mutations,” Physical Review E, vol. 85, Apr 2012. M. H. Mohd and J. Park, “The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics,” Chaos, Solitons and Fractals, vol. 153, p. 111579, 2021. S. Venkat and M. Pleimling, “Mobility and asymmetry effects in one-dimensional rock-paper-scissors games,” Physical Review E, vol. 81, no. 2, 2010. E. M. Ferreira and A. G. Neves, “Fixation probabilities for the moran process with three or more strategies: General and coupling results,” Journal of Mathematical Biology, vol. 81, no. 1, p. 277–314, 2020. Nature-Education, “Hardy-weinberg equilibrium,” 2014. R. Kliman, B. Sheehy, B, and J. Schultz, “Genetic drift and effective population size,” 2008. W. P. Barreto, F. M. Marquitti, and M. A. de Aguiar, “A genetic approach to the rock-paper-scissors game,” Journal of Theoretical Biology, vol. 421, pp. 146–152, 2017. W. Hu, G. Zhang, H. Tian, and Z. Wang, “Chaotic dynamics in asymmetric rock-paper-scissors games,” IEEE Access, vol. PP, pp. 1–1, 11 2019. T.-J. Feng, J. Mei, R.-W.Wang, S. Lessard, Y. Tao, and X.-D. Zheng, “Noise-induced quasi-heteroclinic cycle in a rock–paper–scissors game with random payoffs,” Dynamic Games and Applications, vol. 12, no. 4, p. 1280–1292, 2022. R. M. May and R. H. M. Arthur, “Niche overlap as a function of environmental variability,” Proceedings of the National Academy of Sciences, vol. 69, no. 5, pp. 1109–1113, 1972. R. M. May, Stability and complexity in model ecosystems, vol. 1. Princeton university press, 2019. M. J. Liao, M. O. Din, L. Tsimring, and J. Hasty, “Rock-paper-scissors: Engineered population dynamics increase genetic stability,” Science, vol. 365, no. 6457, pp. 1045–1049, 2019. M. K. Gavina, T. Tahara, K.-i. Tainaka, H. Ito, S. Morita, G. Ichinose, T. Okabe, T. Togashi, T. Nagatani, and J. Yoshimura, “Multi-species coexistence in lotka-volterra competitive systems with crowding effects,” Scientific Reports, vol. 8, no. 1, 2018. J. Paulsson, “Multileveled Selection on Plasmid Replication,” Genetics, vol. 161, pp. 1373–1384, 08 2002. G. del Solar and M. Espinosa, “Plasmid copy number control: An ever-growing story,” Molecular microbiology, Jan 2002. M. A. Brockhurst, M. E. Hochberg, T. Bell, and A. Buckling, “Character displacement promotes cooperation in bacterial biofilms,” Current Biology, vol. 16, p. 2030–2034, Oct 2006. D. Fudenberg, M. A. Nowak, C. Taylor, and L. A. Imhof, “Evolutionary game dynamics in finite populations with strong selection and weak mutation,” Theoretical Population Biology, vol. 70, p. 352–363, Aug 2006. W. H. Sandholm, Economic learning and social evolution: Population games and evolutionary dynamics. MIT Press, 2011. B. C. McCannon, “Rock paper scissors,” Journal of Economics, vol. 92, p. 67–88, Jul 2007. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
57 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ef422d51-6a76-4f87-89d5-10de40068ec3/download https://repositorio.uniandes.edu.co/bitstreams/a552b9fd-8765-4141-986d-c05ac85c3a37/download https://repositorio.uniandes.edu.co/bitstreams/4aed7064-9284-488d-807c-7be96d771e6d/download https://repositorio.uniandes.edu.co/bitstreams/ef9d4759-b389-4ba7-9067-005e67c61d2b/download https://repositorio.uniandes.edu.co/bitstreams/fc6bfa1c-00d7-4e5a-88ec-230e0c627ed4/download https://repositorio.uniandes.edu.co/bitstreams/a888d2f4-57a3-49b7-966c-76116da33112/download https://repositorio.uniandes.edu.co/bitstreams/37ec27d7-82ed-4a2e-8bac-386f50fcac54/download https://repositorio.uniandes.edu.co/bitstreams/58c50537-8dbf-4d89-89f4-cb42215274b3/download |
bitstream.checksum.fl_str_mv |
c7b880deffc71e15eed6a66b42b17ac8 b32d4a34023ad42abb4f53a30893afdc 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f e7f88cd8dff39691924d2ac52be9b050 6287cf8acf1cd119da0189c03a416852 3f6f587d8daf37d2a444606320f21484 563d03a6a7b0ad3823342e280feb3354 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111837355376640 |
spelling |
Pedraza Leal, Juan Manuelvirtual::20603-1González López, Olga CarolinaForero Shelton, Antonio ManuFacultad de Ciencias::Biofísica2024-02-05T13:16:38Z2024-02-05T13:16:38Z2024-01-02https://hdl.handle.net/1992/73882instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La biodiversidad desempeña un papel esencial en la estabilidad de los ecosistemas, proporcionando a las especies las herramientas necesarias para sobrevivir, adaptarse y responder a cambios ambientales. En este proyecto se evaluó el modelo de piedra, papel o tijera en el contexto de la preservación de la biodiversidad, evaluando la probabilidad de fijación de especies en este juego mediante enfoques analíticos y simulaciones con nashpy. Se derivaron conclusiones importantes del análisis computacional, destacando la influencia de la estabilidad del equilibrio de Nash en la fijación de especies. La comparación entre modelos analíticos y computacionales reveló una mayor precisión en este último para intensidades de selección bajas. Además, se exploraron fenómenos como la deriva genética, la variabilidad en los pagos y la relación entre estabilidad del juego y propagación del ruido. Un segundo análisis reprodujo resultados experimentales, demostrando la generación de ciclos de dominancia poblacional en presencia de flujos constantes de individuos con distintas estrategias. La estabilidad del equilibrio de juego influyó en periodos de oscilación más prolongados, y la ventaja inicial de una especie no afectó la coexistencia. Se sugirió la existencia de competencia intraespecífica, similar al modelo de Lotka-Volterra.FísicoPregradoBiología de sistemas57 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2La relevancia del modelo de piedra, papel o tijera en la preservación de biodiversidadThe relevance of the rock-paper-scissors model for biodiversity preservation.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBiodiversidadEvoluciónTeoría de juegosTeoría de juegos evolutivaDominancia cíclicaProceso de MoranFísicaQ. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren, “Stochastic evolution dynamic of the rock–scissors–paper game based on a quasi birth and death process,” Scientific Reports, vol. 6, no. 1, 2016.M. Tiller, “Lotka-volterra systems.”M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, 2006.M. A. Nowak, C. E. Tarnita, and T. Antal, “Evolutionary dynamics in structured populations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 19–30, 2010.M. A. Nowak, “Five rules for the evolution of cooperation,” Science, vol. 314, no. 5805, pp. 1560–1563, 2006.S. Mukherjee and B. L. Bassler, “Bacterial quorum sensing in complex and dynamically changing environments,” Nature Reviews Microbiology, vol. 17, no. 6, p. 371–382, 2019.T. Verma and A. K. Gupta, “Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations,” Chaos, Solitons and Fractals, vol. 153, p. 111538, 2021.C. A. Correa Ayram, M. E. Mendoza, A. Etter, and D. R. P. Salicrup, “Habitat connectivity in biodiversity conservation: A review of recent studies and applications,” Progress in Physical Geography, vol. 40, no. 1, pp. 7–37, 2016.B. Sinervo and C. Lively, “The rock-paper-scissors game and the evolution of alternative male strategies,” Nature, vol. 380, pp. 240–243, 03 1996.J. Park, “Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction,” Europhysics Letters, vol. 126, p. 38004, jun 2019.G. J. Bakus, “Chemical defense mechanisms on the great barrier reef, australia,” Science, vol. 211, no. 4481, pp. 497–499, 1981.C. E. Paquin and J. Adams, “Relative fitness can decrease in evolving asexual populations of s. cerevisiae,” Nature, vol. 306, no. 5941, p. 368–371, 1983.B. C. Kirkup and M. A. Riley, “Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo,” Nature, vol. 428, no. 6981, p. 412–414, 2004.E. Cascales, S. K. Buchanan, D. Duché, C. Kleanthous, R. Lloubès, K. Postle, M. Riley, S. Slatin, and D. Cavard, “Colicin biology,” Microbiology and Molecular Biology Reviews, vol. 71, no. 1, pp. 158–229, 2007.B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, “Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors,” Nature, vol. 418, no. 6894, p. 171–174, 2002.A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic dynamics of invasion and fixation,” Phys. Rev. E, vol. 74, p. 011909, Jul 2006.X. Liu, Q. Pan, Y. Kang, and M. He, “Fixation probabilities in evolutionary games with the moran and fermi processes,” Journal of Theoretical Biology, vol. 364, pp. 242– 248, 2015.J. M. Pedraza, Estocasticidad en procesos moleculares. 2018.V. Knight and J. Campbell, “Nashpy: A python library for the computation of nash equilibria,” Journal of Open Source Software, vol. 3, no. 30, p. 904, 2018.J. C. Claussen and A. Traulsen, “Cyclic dominance and biodiversity in well-mixed populations,” Physical Review Letters, vol. 100, feb 2008.R. West and M. Mobilia, “Fixation properties of rock-paper-scissors games in fluctuating populations,” Journal of Theoretical Biology, vol. 491, p. 110135, 2020.W. Norman, “Evolutionary game dynamics and the moran model,” 2020.A. Traulsen, J. C. Claussen, and C. Hauert, “Stochastic differential equations for evolutionary dynamics with demographic noise and mutations,” Physical Review E, vol. 85, Apr 2012.M. H. Mohd and J. Park, “The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics,” Chaos, Solitons and Fractals, vol. 153, p. 111579, 2021.S. Venkat and M. Pleimling, “Mobility and asymmetry effects in one-dimensional rock-paper-scissors games,” Physical Review E, vol. 81, no. 2, 2010.E. M. Ferreira and A. G. Neves, “Fixation probabilities for the moran process with three or more strategies: General and coupling results,” Journal of Mathematical Biology, vol. 81, no. 1, p. 277–314, 2020.Nature-Education, “Hardy-weinberg equilibrium,” 2014.R. Kliman, B. Sheehy, B, and J. Schultz, “Genetic drift and effective population size,” 2008.W. P. Barreto, F. M. Marquitti, and M. A. de Aguiar, “A genetic approach to the rock-paper-scissors game,” Journal of Theoretical Biology, vol. 421, pp. 146–152, 2017.W. Hu, G. Zhang, H. Tian, and Z. Wang, “Chaotic dynamics in asymmetric rock-paper-scissors games,” IEEE Access, vol. PP, pp. 1–1, 11 2019.T.-J. Feng, J. Mei, R.-W.Wang, S. Lessard, Y. Tao, and X.-D. Zheng, “Noise-induced quasi-heteroclinic cycle in a rock–paper–scissors game with random payoffs,” Dynamic Games and Applications, vol. 12, no. 4, p. 1280–1292, 2022.R. M. May and R. H. M. Arthur, “Niche overlap as a function of environmental variability,” Proceedings of the National Academy of Sciences, vol. 69, no. 5, pp. 1109–1113, 1972.R. M. May, Stability and complexity in model ecosystems, vol. 1. Princeton university press, 2019.M. J. Liao, M. O. Din, L. Tsimring, and J. Hasty, “Rock-paper-scissors: Engineered population dynamics increase genetic stability,” Science, vol. 365, no. 6457, pp. 1045–1049, 2019.M. K. Gavina, T. Tahara, K.-i. Tainaka, H. Ito, S. Morita, G. Ichinose, T. Okabe, T. Togashi, T. Nagatani, and J. Yoshimura, “Multi-species coexistence in lotka-volterra competitive systems with crowding effects,” Scientific Reports, vol. 8, no. 1, 2018.J. Paulsson, “Multileveled Selection on Plasmid Replication,” Genetics, vol. 161, pp. 1373–1384, 08 2002.G. del Solar and M. Espinosa, “Plasmid copy number control: An ever-growing story,” Molecular microbiology, Jan 2002.M. A. Brockhurst, M. E. Hochberg, T. Bell, and A. Buckling, “Character displacement promotes cooperation in bacterial biofilms,” Current Biology, vol. 16, p. 2030–2034, Oct 2006.D. Fudenberg, M. A. Nowak, C. Taylor, and L. A. Imhof, “Evolutionary game dynamics in finite populations with strong selection and weak mutation,” Theoretical Population Biology, vol. 70, p. 352–363, Aug 2006.W. H. Sandholm, Economic learning and social evolution: Population games and evolutionary dynamics. MIT Press, 2011.B. C. McCannon, “Rock paper scissors,” Journal of Economics, vol. 92, p. 67–88, Jul 2007.201912678Publicationhttps://scholar.google.es/citations?user=x8-YWMsAAAAJvirtual::20603-10000-0002-1802-3337virtual::20603-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000001817virtual::20603-1a4c0056f-ab75-4234-9297-925380d7633avirtual::20603-1a4c0056f-ab75-4234-9297-925380d7633avirtual::20603-1ORIGINALLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdfLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdfapplication/pdf3850977https://repositorio.uniandes.edu.co/bitstreams/ef422d51-6a76-4f87-89d5-10de40068ec3/downloadc7b880deffc71e15eed6a66b42b17ac8MD51autorizacion tesis-3.pdfautorizacion tesis-3.pdfHIDEapplication/pdf292142https://repositorio.uniandes.edu.co/bitstreams/a552b9fd-8765-4141-986d-c05ac85c3a37/downloadb32d4a34023ad42abb4f53a30893afdcMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4aed7064-9284-488d-807c-7be96d771e6d/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ef9d4759-b389-4ba7-9067-005e67c61d2b/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.txtLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.txtExtracted texttext/plain94932https://repositorio.uniandes.edu.co/bitstreams/fc6bfa1c-00d7-4e5a-88ec-230e0c627ed4/downloade7f88cd8dff39691924d2ac52be9b050MD55autorizacion tesis-3.pdf.txtautorizacion tesis-3.pdf.txtExtracted texttext/plain2048https://repositorio.uniandes.edu.co/bitstreams/a888d2f4-57a3-49b7-966c-76116da33112/download6287cf8acf1cd119da0189c03a416852MD57THUMBNAILLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.jpgLa relevancia del modelo de piedra, papel o tijera en la preservación de la biodiversidad.pdf.jpgGenerated Thumbnailimage/jpeg7207https://repositorio.uniandes.edu.co/bitstreams/37ec27d7-82ed-4a2e-8bac-386f50fcac54/download3f6f587d8daf37d2a444606320f21484MD56autorizacion tesis-3.pdf.jpgautorizacion tesis-3.pdf.jpgGenerated Thumbnailimage/jpeg10920https://repositorio.uniandes.edu.co/bitstreams/58c50537-8dbf-4d89-89f4-cb42215274b3/download563d03a6a7b0ad3823342e280feb3354MD581992/73882oai:repositorio.uniandes.edu.co:1992/738822024-12-04 16:42:00.387http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |