Machine learning-based cancer classification using gene expression data
In this Masters thesis we explore some machine and deep learning algorithms to classify different types of cancer-based on the gene expression profile of each sample. We use expression profiles of both cancer tissue and normal tissue to train the predictive models. The abnormal tissue samples were o...
- Autores:
-
Martínez Logreira, Julián Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50946
- Acceso en línea:
- http://hdl.handle.net/1992/50946
- Palabra clave:
- Cáncer
Genómica
Simulación por computadores
Aprendizaje automático (Inteligencia artificial)
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_23a06836a6253a07a65b014290bc8443 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50946 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bloch Morel, Natasha Ivonne0281f4f5-6cd5-47a0-a32e-12103352be78400Arbeláez Escalante, Pablo Andrésvirtual::13754-1Martínez Logreira, Julián Alexanderaaf335ec-6c82-4dfa-a0a9-ac0f87fa74b3400Valderrama Manrique, Mario AndrésReyes, Alejandro2021-08-10T18:04:38Z2021-08-10T18:04:38Z2020http://hdl.handle.net/1992/5094623632.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this Masters thesis we explore some machine and deep learning algorithms to classify different types of cancer-based on the gene expression profile of each sample. We use expression profiles of both cancer tissue and normal tissue to train the predictive models. The abnormal tissue samples were obtained from The Cancer Genome Atlas (TCGA) and pair with control (normal) tissue samples from The Genotype-Tissue Expression project (GTEx), both public databases. We implemented ensembles of classic machine learning algorithms showing an accuracy up to 16% approximately. We also implemented a graph convolutional network (GCN) in which a top performance of 52% accuracy approximately was reached. These results suggest the potential of graph-based algorithms to find underlying patterns on weakly structured data.En esta tesis de maestría exploramos algunos algoritmos de aprendizaje profundo y máquina para clasificar diferentes tipos de cáncer según la expresión genética perfil de cada muestra. Usamos perfiles de expresión de tanto el tejido canceroso como el tejido normal para entrenar el modelos predictivos. Las muestras de tejido anormal fueron obtenido de The Cancer Genome Atlas (TCGA) y emparejar con muestras de tejido de control (normal) de El proyecto Genotype-Tissue Expression (GTEx), ambas bases de datos públicas. Implementamos conjuntos de algoritmos clásicos de aprendizaje automático que muestran un precisión hasta un 16% aproximadamente. Nosotros también implementó una red convolucional gráfica (GCN)en el que un rendimiento superior del 52% de precisión aproximadamente se alcanzó. Estos resultados sugieren la potencial de algoritmos basados en gráficos para encontrar patrones subyacentes en datos estructurados débilmente.Magíster en Ingeniería BiomédicaMaestría12 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería BiomédicaFacultad de IngenieríaDepartamento de Ingeniería BiomédicaMachine learning-based cancer classification using gene expression dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMCáncerGenómicaSimulación por computadoresAprendizaje automático (Inteligencia artificial)Ingeniería201213994Publicationhttps://scholar.google.es/citations?user=k0nZO90AAAAJvirtual::13754-10000-0001-5244-2407virtual::13754-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001579086virtual::13754-1b4f52d42-ce2a-4e74-a22f-e52a6bfbd48evirtual::13754-1b4f52d42-ce2a-4e74-a22f-e52a6bfbd48evirtual::13754-1TEXT23632.pdf.txt23632.pdf.txtExtracted texttext/plain54220https://repositorio.uniandes.edu.co/bitstreams/962e2ffc-5f21-4c59-8991-e9a86f81d8eb/download7176652c1a6049cd55dc358fadfc9f46MD54ORIGINAL23632.pdfapplication/pdf1479341https://repositorio.uniandes.edu.co/bitstreams/b05c9416-5169-4200-9780-c463d3d5bb5b/downloade888818ff5c8f0ed9a60fc4eb5811801MD51THUMBNAIL23632.pdf.jpg23632.pdf.jpgIM Thumbnailimage/jpeg8196https://repositorio.uniandes.edu.co/bitstreams/f0b21f23-09bb-44ee-98a2-456b1aa67ba1/download22c460aecb9a41de906c3ed4c2751d64MD551992/50946oai:repositorio.uniandes.edu.co:1992/509462024-03-13 15:01:08.528http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Machine learning-based cancer classification using gene expression data |
title |
Machine learning-based cancer classification using gene expression data |
spellingShingle |
Machine learning-based cancer classification using gene expression data Cáncer Genómica Simulación por computadores Aprendizaje automático (Inteligencia artificial) Ingeniería |
title_short |
Machine learning-based cancer classification using gene expression data |
title_full |
Machine learning-based cancer classification using gene expression data |
title_fullStr |
Machine learning-based cancer classification using gene expression data |
title_full_unstemmed |
Machine learning-based cancer classification using gene expression data |
title_sort |
Machine learning-based cancer classification using gene expression data |
dc.creator.fl_str_mv |
Martínez Logreira, Julián Alexander |
dc.contributor.advisor.none.fl_str_mv |
Bloch Morel, Natasha Ivonne Arbeláez Escalante, Pablo Andrés |
dc.contributor.author.none.fl_str_mv |
Martínez Logreira, Julián Alexander |
dc.contributor.jury.none.fl_str_mv |
Valderrama Manrique, Mario Andrés Reyes, Alejandro |
dc.subject.armarc.spa.fl_str_mv |
Cáncer Genómica Simulación por computadores Aprendizaje automático (Inteligencia artificial) |
topic |
Cáncer Genómica Simulación por computadores Aprendizaje automático (Inteligencia artificial) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
In this Masters thesis we explore some machine and deep learning algorithms to classify different types of cancer-based on the gene expression profile of each sample. We use expression profiles of both cancer tissue and normal tissue to train the predictive models. The abnormal tissue samples were obtained from The Cancer Genome Atlas (TCGA) and pair with control (normal) tissue samples from The Genotype-Tissue Expression project (GTEx), both public databases. We implemented ensembles of classic machine learning algorithms showing an accuracy up to 16% approximately. We also implemented a graph convolutional network (GCN) in which a top performance of 52% accuracy approximately was reached. These results suggest the potential of graph-based algorithms to find underlying patterns on weakly structured data. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:04:38Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:04:38Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50946 |
dc.identifier.pdf.none.fl_str_mv |
23632.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50946 |
identifier_str_mv |
23632.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Ingeniería Biomédica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Biomédica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/962e2ffc-5f21-4c59-8991-e9a86f81d8eb/download https://repositorio.uniandes.edu.co/bitstreams/b05c9416-5169-4200-9780-c463d3d5bb5b/download https://repositorio.uniandes.edu.co/bitstreams/f0b21f23-09bb-44ee-98a2-456b1aa67ba1/download |
bitstream.checksum.fl_str_mv |
7176652c1a6049cd55dc358fadfc9f46 e888818ff5c8f0ed9a60fc4eb5811801 22c460aecb9a41de906c3ed4c2751d64 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134017749745664 |