Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission

This study investigates how temperature variability and larval competition influence Dengue transmission dynamics in systems where \textit{Aedes aegypti} and \textit{Aedes albopictus} coexist. We developed a deterministic model incorporating temperature-dependent parameters to analyze vector interac...

Full description

Autores:
Villamil Chacón, Santiago Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75324
Acceso en línea:
https://hdl.handle.net/1992/75324
Palabra clave:
Vector competition
Dengue transmission dynamics
Temperature-dependent modeling
Aedes coexistence
Species invasion analysis
Biología
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNIANDES2_23439b2c3552491494cad66e530a846a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75324
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
title Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
spellingShingle Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
Vector competition
Dengue transmission dynamics
Temperature-dependent modeling
Aedes coexistence
Species invasion analysis
Biología
title_short Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
title_full Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
title_fullStr Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
title_full_unstemmed Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
title_sort Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission
dc.creator.fl_str_mv Villamil Chacón, Santiago Andrés
dc.contributor.advisor.none.fl_str_mv Santos Vega, Oscar Mauricio
dc.contributor.author.none.fl_str_mv Villamil Chacón, Santiago Andrés
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::Biología Matemática y Computacional Biomac
dc.subject.keyword.eng.fl_str_mv Vector competition
Dengue transmission dynamics
Temperature-dependent modeling
Aedes coexistence
Species invasion analysis
topic Vector competition
Dengue transmission dynamics
Temperature-dependent modeling
Aedes coexistence
Species invasion analysis
Biología
dc.subject.themes.spa.fl_str_mv Biología
description This study investigates how temperature variability and larval competition influence Dengue transmission dynamics in systems where \textit{Aedes aegypti} and \textit{Aedes albopictus} coexist. We developed a deterministic model incorporating temperature-dependent parameters to analyze vector interactions across larval and adult stages, coupled with a SEIR framework for human infection dynamics. Using Pairwise Invasibility Plots, coexistence analysis, and infection peak assessment, we evaluated species invasion capability, population dynamics, and disease transmission patterns. Results showed that temperature enables \textit{Ae. albopictus} invasion even under high interspecific competition ($>$70\%), contrasting with its limited invasion capacity ($<$40\%) in temperature-independent conditions. Coexistence analysis demonstrated that temperature variability promotes balanced relative abundances between species, countering the typical \textit{Ae. aegypti} dominance observed in stable thermal conditions. Infection analysis revealed unexpected patterns, with highest infection peaks occurring in scenarios combining low larval competition for \textit{Ae. aegypti} with high competition for \textit{Ae. albopictus}. These findings challenge traditional assumptions about vector dominance in Dengue transmission and emphasize the importance of temperature-sensitive control strategies in regions where both species coexist under climate change conditions.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-10T14:57:29Z
dc.date.available.none.fl_str_mv 2025-01-10T14:57:29Z
dc.date.issued.none.fl_str_mv 2025-01-07
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75324
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75324
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Gubler, D.J.: Human arbovirus infections worldwide. Ann. N. Y. Acad. Sci. 951(1), 13–24 (2001). https://doi.org/10.1111/j.1749-6632.2001.tb02681.x
CDC: Arbovirus Catalog - CDC Division of Vector-Borne Diseases (DVBD) — wwwn.cdc.gov (n.d). https://wwwn.cdc.gov/arbocat/VirusBrowser.aspx
Instituto Nacional de Salud (INS): Semana epidemiol ́ogica 50. Bolet ́ın Epi- demiol ́ogico Semanal (1062) (2024). https://www.ins.gov.co/buscador-eventos/ BoletinEpidemiologico/2024 Boletin epidemiologico semana 50.pdf
Pan American Health Organization (PAHO): Report on the epidemiological sit- uation of dengue in the americas (2024). https://www.paho.org/sites/default/ files/2024-12/2024-cde-dengue-sitrep-americas-epi-week-48-19-dec.pdf
Carrasquilla, M.C., Ortiz, M.I., Le ́on, C., Rond ́on, S., Kulkarni, M.A., Talbot, B., Sander, B., V ́asquez, H., Cordovez, J.M., Gonz ́alez, C., RADAM-LAC Research Team: Entomological characterization of aedes mosquitoes and arbovirus detec- tion in ibagu ́e, a colombian city with co-circulation of zika, dengue and chikungunya viruses. Parasit. Vectors 14(1), 446 (2021). https://doi.org/10.1186/ s13071-021-04908-x
Weetman, D., Kamgang, B., Badolo, A., Moyes, C., Shearer, F., Coulibaly, M., Pinto, J., Lambrechts, L., McCall, P.: Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats. Int. J. Environ. Res. Public Health 15(2), 220 (2018). https://doi.org/10.3390/ijerph15020220
Merritt, R.W., Dadd, R.H., Walker, E.D.: Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 37(1), 349– 374 (1992). https://doi.org/10.1146/annurev.en.37.010192.002025
Canyon, D.V., Hii, J.L.K., Muller, R.: The frequency of host biting and its effect on oviposition and survival in aedes aegypti (diptera: Culicidae). Bull. Entomol. Res. 89(1), 35–39 (1999). https://doi.org/10.1017/S000748539900005X
Delatte, H., Desvars, A., Bou ́etard, A., Bord, S., Gimonneau, G., Vourc’h, G., Fontenille, D.: Blood-Feeding behavior ofaedes albopictus, a vector of chikun- gunya on la r ́eunion. Vector Borne Zoonotic Dis. 10(3), 249–258 (2010). https: //doi.org/10.1089/vbz.2009.0026
Muhammad, N.A.F., Abu Kassim, N.F., Ab Majid, A.H., Abd Rahman, A., Dieng, H., Avicor, S.W.: Biting rhythm and demographic attributes of aedes albopictus (skuse) females from different urbanized settings in penang island, malaysia under uncontrolled laboratory conditions. PLoS One 15(11), 0241688 (2020). https://doi.org/10.1371/journal.pone.0241688
Aneesh, D.E.M.A., Communicable Disease Research Laboratory, Department of Zoology, St. Josephs College, Irinjalakkuda.: Life cycle, bio-ecology and DNA barcoding of mosquitoes aedes aegypti (linnaeus) and aedes albopictus (skuse). J. Commun. Dis. 49(3), 32–41 (2017). https://doi.org/10.24321/0019.5138.201719
Faraji, A., Egizi, A., Fonseca, D.M., Unlu, I., Crepeau, T., Healy, S.P., Gau- gler, R.: Comparative host feeding patterns of the asian tiger mosquito, aedes albopictus, in urban and suburban northeastern USA and implications for dis- ease transmission. PLoS Negl. Trop. Dis. 8(8), 3037 (2014). https://doi.org/10. 1371/journal.pntd.0003037
Rose, N.H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O.B., Ibe, N., Akorli, J., Otoo, S., Mutebi, J.-P., Kriete, A.L., Ewing, E.G., Sang, R., Gloria-Soria, A., Powell, J.R., Baker, R.E., White, B.J., Crawford, J.E., McBride, C.S.: Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30(18), 3570–35796 (2020). https://doi.org/10.1016/j.cub.2020.06.092
NOAA National Centers for Environmental Information: Climate at a Glance — Global Time Series — National Centers for Environmental Informa- tion (NCEI) — ncei.noaa.gov. https://www.ncei.noaa.gov/access/monitoring/ climate-at-a-glance/global/time-series
Rezza, G.: Aedes albopictus and the reemergence of dengue. BMC Public Health 12(1), 72 (2012). https://doi.org/10.1186/1471-2458-12-72
Brady, O.J., Johansson, M.A., Guerra, C.A., Bhatt, S., Golding, N., Pigott, D.M., Delatte, H., Grech, M.G., Leisnham, P.T., Maciel-de-Freitas, R., Styer, L.M., Smith, D.L., Scott, T.W., Gething, P.W., Hay, S.I.: Modelling adult aedes aegypti and aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors 6(1), 351 (2013). https://doi.org/10.1186/ 1756-3305-6-351
Hamlet, A., Jean, K., Perea, W., Yactayo, S., Biey, J., Van Kerkhove, M., Fergu- son, N., Garske, T.: The seasonal influence of climate and environment on yellow fever transmission across africa. PLoS Negl. Trop. Dis. 12(3), 0006284 (2018). https://doi.org/10.1371/journal.pntd.0006284
Ahebwa, A., Hii, J., Neoh, K.-B., Chareonviriyaphap, T.: Aedes aegypti and aedes albopictus (diptera: Culicidae) ecology, biology, behaviour, and implications on arbovirus transmission in thailand: Review. One Health 16(100555), 100555 (2023). https://doi.org/10.1016/j.onehlt.2023.100555
Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., Miazgowicz, K., Murdock, C.C., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Stewart Ibarra, A., Thomas, M.B., Weikel, D.P.: Detecting the impact of temperature on transmission of zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11(4), 0005568 (2017). https://doi.org/10.1371/ journal.pntd.0005568
Zahid, M.H., Van Wyk, H., Morrison, A.C., Coloma, J., Lee, G.O., Cevallos, V., Ponce, P., Eisenberg, J.N.S.: The biting rate of aedes aegypti and its variability: A systematic review (1970-2022). PLoS Negl. Trop. Dis. 17(8), 0010831 (2023). https://doi.org/10.1371/journal.pntd.0010831
Enduri, M.K., Jolad, S.: Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018). https://doi.org/10. 1016/j.sste.2018.03.001
Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Fuzzy approach analyzing SEIR-SEI dengue dynamics. Biomed Res. Int. 2020, 1508613 (2020). https://doi.org/10. 1155/2020/1508613
Couret, J., Dotson, E., Benedict, M.Q.: Temperature, larval diet, and density effects on development rate and survival of aedes aegypti (diptera: Culicidae). PLoS One 9(2), 87468 (2014). https://doi.org/10.1371/journal.pone.0087468
Cui, G., Zhong, S., Zheng, T., Li, Z., Zhang, X., Li, C., Hemming-Schroeder, E., Zhou, G., Li, Y.: Aedes albopictus life table: environment, food, and age dependence survivorship and reproduction in a tropical area. Parasit. Vectors 14(1), 568 (2021)
Sedda, L., Taylor, B.M., Eiras, A.E., Marques, J.T., Dillon, R.J.: Using the intrin- sic growth rate of the mosquito population improves spatio-temporal dengue risk estimation. Acta Trop. 208(105519), 105519 (2020). https://doi.org/10.1016/j. actatropica.2020.105519
Fu, J.Y.L., Chua, C.L., Abu Bakar, A.S., Vythilingam, I., Wan Sulaiman, W.Y., Alphey, L., Chan, Y.F., Sam, I.-C.: Susceptibility of aedes albopictus, ae. aegypti and human populations to ross river virus in kuala lumpur, malaysia. PLoS Negl. Trop. Dis. 17(6), 0011423 (2023). https://doi.org/10.1371/journal.pntd.0011423
O’Meara, G.F., Evans, L.F. Jr, Gettman, A.D., Cuda, J.P.: Spread of aedes albopictus and decline of ae. aegypti (diptera: Culicidae) in florida. J. Med. Entomol. 32(4), 554–562 (1995). https://doi.org/10.1093/jmedent/32.4.554
Lounibos, L.P.: Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47(1), 233–266 (2002). https://doi.org/10.1146/annurev.ento.47.091201.145206
Juliano, S.A.: Species introduction and replacement among mosquitoes: Inter- specific resource competition or apparent competition? Ecology 79(1), 255–268 (1998). https://doi.org/10.1890/0012-9658(1998)079[0255:SIARAM]2.0.CO;2
Kaplan, L., Kendell, D., Robertson, D., Livdahl, T., Khatchikian, C.: Aedes aegypti and aedes albopictus in bermuda: extinction, invasion, invasion and extinction. Biol. Invasions 12(9), 3277–3288 (2010). https://doi.org/10.1007/ s10530-010-9721-z
Braks, M.A.H., Hon ́orio, N.A., Lounibos, L.P., Lourenc ̧o-De-Oliveira, R., Juliano, S.A.: Interspecific competition between two invasive species of con- tainer mosquitoes, aedes aegypti and aedes albopictus (diptera: Culicidae), in brazil. Ann. Entomol. Soc. Am. 97(1), 130–139 (2004). https://doi.org/10.1603/ 0013-8746(2004)097[0130:ICBTIS]2.0.CO;2
Barrera, R.: Competition and resistance to starvation in larvae of container- inhabiting Aedes mosquitoes. Ecol. Entomol. 21(2), 117–127 (1996). https://doi. org/10.1111/j.1365-2311.1996.tb01178.x
Juliano, S.A., O’Meara, G.F., Morrill, J.R., Cutwa, M.M.: Desiccation and ther- mal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130(3), 458–469 (2002). https://doi.org/10.1007/s004420100811
Giatropoulos, A., Papachristos, D.P., Koliopoulos, G., Michaelakis, A., Emmanouel, N.: Asymmetric mating interference between two related mosquito species: Aedes (stegomyia) albopictus and aedes (stegomyia) cretinus. PLoS One 10(5), 0127762 (2015). https://doi.org/10.1007/s004420100811
Lounibos, L.P., Su ́arez, S., Men ́endez, Z., Nishimura, N., Escher, R.L., O’Connell, S.M., Rey, J.R.: Does temperature affect the outcome of larval competition between aedes aegypti and aedes albopictus? Journal of vector ecology : journal of the Society for Vector Ecology 27 1, 86–95 (2002)
Charrel, R.N., Lamballerie, X., Raoult, D.: Chikungunya outbreaks–the glob- alization of vectorborne diseases. N. Engl. J. Med. 356(8), 769–771 (2007). https://doi.org/10.1056/NEJMp078013
Gubler, D.J.: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11(3), 480–496 (1998). https://doi.org/10.1128/CMR.11.3.480
Schuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M.-C., Lavenir, R., Pardigon, N., Reynes, J.-M., Pettinelli, F., Biscornet, L., Diancourt, L., Michel, S., Duquerroy, S., Guigon, G., Frenkiel, M.-P., Br ́ehin, A.-C., Cubito, N., Despr`es, P., Kunst, F., Rey, F.A., Zeller, H., Brisse, S.: Genome microevolu- tion of chikungunya viruses causing the indian ocean outbreak. PLoS Med. 3(7), 263 (2006). https://doi.org/10.1371/journal.pmed.0030263
Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A.C., Panning, M., Cor- dioli, P., Fortuna, C., Boros, S., Magurano, F., Silvi, G., Angelini, P., Dottori, M., Ciufolini, M.G., Majori, G.C., Cassone, A., CHIKV study group: Infection with chikungunya virus in italy: an outbreak in a temperate region. Lancet 370(9602), 1840–1846 (2007). https://doi.org/10.1016/S0140-6736(07)61779-6
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/61c3a8c5-d9e5-48d4-b4db-2fb72ec52ae2/download
https://repositorio.uniandes.edu.co/bitstreams/7875c429-9c5b-4b8c-83f7-27304e911157/download
https://repositorio.uniandes.edu.co/bitstreams/0cbcd71c-a493-4352-9811-6b1d31340336/download
https://repositorio.uniandes.edu.co/bitstreams/5336f4d6-2753-4c77-89da-810686d13d0c/download
https://repositorio.uniandes.edu.co/bitstreams/1c3005db-4e41-4612-8fa2-2c4bc4ddc08e/download
https://repositorio.uniandes.edu.co/bitstreams/f01779f3-8d32-4e3c-aa86-502ebbdf2272/download
https://repositorio.uniandes.edu.co/bitstreams/fafd07b0-352c-4651-b74c-dc4acf2791a2/download
https://repositorio.uniandes.edu.co/bitstreams/07f07ca2-4c5d-489c-a6f2-d26da91cad6b/download
bitstream.checksum.fl_str_mv 295aabc0c2a73982067bcb480c1c5538
c4b94bacc956e825e08eba41d6aebc6f
934f4ca17e109e0a05eaeaba504d7ce4
ae9e573a68e7f92501b6913cc846c39f
6ee7de03fc8f8aaaffe0f0756922ae95
6026d9c09d69da01e9c586b8d709157d
b13679ccd85f18498ce465e6a47e1eb8
3576a6213fe2ad84bc2bd04a7ef70171
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159249779261440
spelling Santos Vega, Oscar Mauriciovirtual::21941-1Villamil Chacón, Santiago AndrésFacultad de Ingeniería::Biología Matemática y Computacional Biomac2025-01-10T14:57:29Z2025-01-10T14:57:29Z2025-01-07https://hdl.handle.net/1992/75324instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This study investigates how temperature variability and larval competition influence Dengue transmission dynamics in systems where \textit{Aedes aegypti} and \textit{Aedes albopictus} coexist. We developed a deterministic model incorporating temperature-dependent parameters to analyze vector interactions across larval and adult stages, coupled with a SEIR framework for human infection dynamics. Using Pairwise Invasibility Plots, coexistence analysis, and infection peak assessment, we evaluated species invasion capability, population dynamics, and disease transmission patterns. Results showed that temperature enables \textit{Ae. albopictus} invasion even under high interspecific competition ($>$70\%), contrasting with its limited invasion capacity ($<$40\%) in temperature-independent conditions. Coexistence analysis demonstrated that temperature variability promotes balanced relative abundances between species, countering the typical \textit{Ae. aegypti} dominance observed in stable thermal conditions. Infection analysis revealed unexpected patterns, with highest infection peaks occurring in scenarios combining low larval competition for \textit{Ae. aegypti} with high competition for \textit{Ae. albopictus}. These findings challenge traditional assumptions about vector dominance in Dengue transmission and emphasize the importance of temperature-sensitive control strategies in regions where both species coexist under climate change conditions.PregradoEcologíaMatemática ComputacionalModelado MatemáticoEnfermedades Transmitidas por Vectores21 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmissionTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPVector competitionDengue transmission dynamicsTemperature-dependent modelingAedes coexistenceSpecies invasion analysisBiologíaGubler, D.J.: Human arbovirus infections worldwide. Ann. N. Y. Acad. Sci. 951(1), 13–24 (2001). https://doi.org/10.1111/j.1749-6632.2001.tb02681.xCDC: Arbovirus Catalog - CDC Division of Vector-Borne Diseases (DVBD) — wwwn.cdc.gov (n.d). https://wwwn.cdc.gov/arbocat/VirusBrowser.aspxInstituto Nacional de Salud (INS): Semana epidemiol ́ogica 50. Bolet ́ın Epi- demiol ́ogico Semanal (1062) (2024). https://www.ins.gov.co/buscador-eventos/ BoletinEpidemiologico/2024 Boletin epidemiologico semana 50.pdfPan American Health Organization (PAHO): Report on the epidemiological sit- uation of dengue in the americas (2024). https://www.paho.org/sites/default/ files/2024-12/2024-cde-dengue-sitrep-americas-epi-week-48-19-dec.pdfCarrasquilla, M.C., Ortiz, M.I., Le ́on, C., Rond ́on, S., Kulkarni, M.A., Talbot, B., Sander, B., V ́asquez, H., Cordovez, J.M., Gonz ́alez, C., RADAM-LAC Research Team: Entomological characterization of aedes mosquitoes and arbovirus detec- tion in ibagu ́e, a colombian city with co-circulation of zika, dengue and chikungunya viruses. Parasit. Vectors 14(1), 446 (2021). https://doi.org/10.1186/ s13071-021-04908-xWeetman, D., Kamgang, B., Badolo, A., Moyes, C., Shearer, F., Coulibaly, M., Pinto, J., Lambrechts, L., McCall, P.: Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats. Int. J. Environ. Res. Public Health 15(2), 220 (2018). https://doi.org/10.3390/ijerph15020220Merritt, R.W., Dadd, R.H., Walker, E.D.: Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 37(1), 349– 374 (1992). https://doi.org/10.1146/annurev.en.37.010192.002025Canyon, D.V., Hii, J.L.K., Muller, R.: The frequency of host biting and its effect on oviposition and survival in aedes aegypti (diptera: Culicidae). Bull. Entomol. Res. 89(1), 35–39 (1999). https://doi.org/10.1017/S000748539900005XDelatte, H., Desvars, A., Bou ́etard, A., Bord, S., Gimonneau, G., Vourc’h, G., Fontenille, D.: Blood-Feeding behavior ofaedes albopictus, a vector of chikun- gunya on la r ́eunion. Vector Borne Zoonotic Dis. 10(3), 249–258 (2010). https: //doi.org/10.1089/vbz.2009.0026Muhammad, N.A.F., Abu Kassim, N.F., Ab Majid, A.H., Abd Rahman, A., Dieng, H., Avicor, S.W.: Biting rhythm and demographic attributes of aedes albopictus (skuse) females from different urbanized settings in penang island, malaysia under uncontrolled laboratory conditions. PLoS One 15(11), 0241688 (2020). https://doi.org/10.1371/journal.pone.0241688Aneesh, D.E.M.A., Communicable Disease Research Laboratory, Department of Zoology, St. Josephs College, Irinjalakkuda.: Life cycle, bio-ecology and DNA barcoding of mosquitoes aedes aegypti (linnaeus) and aedes albopictus (skuse). J. Commun. Dis. 49(3), 32–41 (2017). https://doi.org/10.24321/0019.5138.201719Faraji, A., Egizi, A., Fonseca, D.M., Unlu, I., Crepeau, T., Healy, S.P., Gau- gler, R.: Comparative host feeding patterns of the asian tiger mosquito, aedes albopictus, in urban and suburban northeastern USA and implications for dis- ease transmission. PLoS Negl. Trop. Dis. 8(8), 3037 (2014). https://doi.org/10. 1371/journal.pntd.0003037Rose, N.H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O.B., Ibe, N., Akorli, J., Otoo, S., Mutebi, J.-P., Kriete, A.L., Ewing, E.G., Sang, R., Gloria-Soria, A., Powell, J.R., Baker, R.E., White, B.J., Crawford, J.E., McBride, C.S.: Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30(18), 3570–35796 (2020). https://doi.org/10.1016/j.cub.2020.06.092NOAA National Centers for Environmental Information: Climate at a Glance — Global Time Series — National Centers for Environmental Informa- tion (NCEI) — ncei.noaa.gov. https://www.ncei.noaa.gov/access/monitoring/ climate-at-a-glance/global/time-seriesRezza, G.: Aedes albopictus and the reemergence of dengue. BMC Public Health 12(1), 72 (2012). https://doi.org/10.1186/1471-2458-12-72Brady, O.J., Johansson, M.A., Guerra, C.A., Bhatt, S., Golding, N., Pigott, D.M., Delatte, H., Grech, M.G., Leisnham, P.T., Maciel-de-Freitas, R., Styer, L.M., Smith, D.L., Scott, T.W., Gething, P.W., Hay, S.I.: Modelling adult aedes aegypti and aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors 6(1), 351 (2013). https://doi.org/10.1186/ 1756-3305-6-351Hamlet, A., Jean, K., Perea, W., Yactayo, S., Biey, J., Van Kerkhove, M., Fergu- son, N., Garske, T.: The seasonal influence of climate and environment on yellow fever transmission across africa. PLoS Negl. Trop. Dis. 12(3), 0006284 (2018). https://doi.org/10.1371/journal.pntd.0006284Ahebwa, A., Hii, J., Neoh, K.-B., Chareonviriyaphap, T.: Aedes aegypti and aedes albopictus (diptera: Culicidae) ecology, biology, behaviour, and implications on arbovirus transmission in thailand: Review. One Health 16(100555), 100555 (2023). https://doi.org/10.1016/j.onehlt.2023.100555Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., Miazgowicz, K., Murdock, C.C., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Stewart Ibarra, A., Thomas, M.B., Weikel, D.P.: Detecting the impact of temperature on transmission of zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11(4), 0005568 (2017). https://doi.org/10.1371/ journal.pntd.0005568Zahid, M.H., Van Wyk, H., Morrison, A.C., Coloma, J., Lee, G.O., Cevallos, V., Ponce, P., Eisenberg, J.N.S.: The biting rate of aedes aegypti and its variability: A systematic review (1970-2022). PLoS Negl. Trop. Dis. 17(8), 0010831 (2023). https://doi.org/10.1371/journal.pntd.0010831Enduri, M.K., Jolad, S.: Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018). https://doi.org/10. 1016/j.sste.2018.03.001Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Fuzzy approach analyzing SEIR-SEI dengue dynamics. Biomed Res. Int. 2020, 1508613 (2020). https://doi.org/10. 1155/2020/1508613Couret, J., Dotson, E., Benedict, M.Q.: Temperature, larval diet, and density effects on development rate and survival of aedes aegypti (diptera: Culicidae). PLoS One 9(2), 87468 (2014). https://doi.org/10.1371/journal.pone.0087468Cui, G., Zhong, S., Zheng, T., Li, Z., Zhang, X., Li, C., Hemming-Schroeder, E., Zhou, G., Li, Y.: Aedes albopictus life table: environment, food, and age dependence survivorship and reproduction in a tropical area. Parasit. Vectors 14(1), 568 (2021)Sedda, L., Taylor, B.M., Eiras, A.E., Marques, J.T., Dillon, R.J.: Using the intrin- sic growth rate of the mosquito population improves spatio-temporal dengue risk estimation. Acta Trop. 208(105519), 105519 (2020). https://doi.org/10.1016/j. actatropica.2020.105519Fu, J.Y.L., Chua, C.L., Abu Bakar, A.S., Vythilingam, I., Wan Sulaiman, W.Y., Alphey, L., Chan, Y.F., Sam, I.-C.: Susceptibility of aedes albopictus, ae. aegypti and human populations to ross river virus in kuala lumpur, malaysia. PLoS Negl. Trop. Dis. 17(6), 0011423 (2023). https://doi.org/10.1371/journal.pntd.0011423O’Meara, G.F., Evans, L.F. Jr, Gettman, A.D., Cuda, J.P.: Spread of aedes albopictus and decline of ae. aegypti (diptera: Culicidae) in florida. J. Med. Entomol. 32(4), 554–562 (1995). https://doi.org/10.1093/jmedent/32.4.554Lounibos, L.P.: Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47(1), 233–266 (2002). https://doi.org/10.1146/annurev.ento.47.091201.145206Juliano, S.A.: Species introduction and replacement among mosquitoes: Inter- specific resource competition or apparent competition? Ecology 79(1), 255–268 (1998). https://doi.org/10.1890/0012-9658(1998)079[0255:SIARAM]2.0.CO;2Kaplan, L., Kendell, D., Robertson, D., Livdahl, T., Khatchikian, C.: Aedes aegypti and aedes albopictus in bermuda: extinction, invasion, invasion and extinction. Biol. Invasions 12(9), 3277–3288 (2010). https://doi.org/10.1007/ s10530-010-9721-zBraks, M.A.H., Hon ́orio, N.A., Lounibos, L.P., Lourenc ̧o-De-Oliveira, R., Juliano, S.A.: Interspecific competition between two invasive species of con- tainer mosquitoes, aedes aegypti and aedes albopictus (diptera: Culicidae), in brazil. Ann. Entomol. Soc. Am. 97(1), 130–139 (2004). https://doi.org/10.1603/ 0013-8746(2004)097[0130:ICBTIS]2.0.CO;2Barrera, R.: Competition and resistance to starvation in larvae of container- inhabiting Aedes mosquitoes. Ecol. Entomol. 21(2), 117–127 (1996). https://doi. org/10.1111/j.1365-2311.1996.tb01178.xJuliano, S.A., O’Meara, G.F., Morrill, J.R., Cutwa, M.M.: Desiccation and ther- mal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130(3), 458–469 (2002). https://doi.org/10.1007/s004420100811Giatropoulos, A., Papachristos, D.P., Koliopoulos, G., Michaelakis, A., Emmanouel, N.: Asymmetric mating interference between two related mosquito species: Aedes (stegomyia) albopictus and aedes (stegomyia) cretinus. PLoS One 10(5), 0127762 (2015). https://doi.org/10.1007/s004420100811Lounibos, L.P., Su ́arez, S., Men ́endez, Z., Nishimura, N., Escher, R.L., O’Connell, S.M., Rey, J.R.: Does temperature affect the outcome of larval competition between aedes aegypti and aedes albopictus? Journal of vector ecology : journal of the Society for Vector Ecology 27 1, 86–95 (2002)Charrel, R.N., Lamballerie, X., Raoult, D.: Chikungunya outbreaks–the glob- alization of vectorborne diseases. N. Engl. J. Med. 356(8), 769–771 (2007). https://doi.org/10.1056/NEJMp078013Gubler, D.J.: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11(3), 480–496 (1998). https://doi.org/10.1128/CMR.11.3.480Schuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M.-C., Lavenir, R., Pardigon, N., Reynes, J.-M., Pettinelli, F., Biscornet, L., Diancourt, L., Michel, S., Duquerroy, S., Guigon, G., Frenkiel, M.-P., Br ́ehin, A.-C., Cubito, N., Despr`es, P., Kunst, F., Rey, F.A., Zeller, H., Brisse, S.: Genome microevolu- tion of chikungunya viruses causing the indian ocean outbreak. PLoS Med. 3(7), 263 (2006). https://doi.org/10.1371/journal.pmed.0030263Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A.C., Panning, M., Cor- dioli, P., Fortuna, C., Boros, S., Magurano, F., Silvi, G., Angelini, P., Dottori, M., Ciufolini, M.G., Majori, G.C., Cassone, A., CHIKV study group: Infection with chikungunya virus in italy: an outbreak in a temperate region. Lancet 370(9602), 1840–1846 (2007). https://doi.org/10.1016/S0140-6736(07)61779-6201914860Publication3cb42940-8004-4fec-9783-037937f65461virtual::21941-13cb42940-8004-4fec-9783-037937f65461virtual::21941-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001432499virtual::21941-1ORIGINAL201914860_ForAutEntTesis_TraGraSisBib_202420.pdf201914860_ForAutEntTesis_TraGraSisBib_202420.pdfHIDEapplication/pdf276190https://repositorio.uniandes.edu.co/bitstreams/61c3a8c5-d9e5-48d4-b4db-2fb72ec52ae2/download295aabc0c2a73982067bcb480c1c5538MD51Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdfEcological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdfapplication/pdf804744https://repositorio.uniandes.edu.co/bitstreams/7875c429-9c5b-4b8c-83f7-27304e911157/downloadc4b94bacc956e825e08eba41d6aebc6fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/0cbcd71c-a493-4352-9811-6b1d31340336/download934f4ca17e109e0a05eaeaba504d7ce4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5336f4d6-2753-4c77-89da-810686d13d0c/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXT201914860_ForAutEntTesis_TraGraSisBib_202420.pdf.txt201914860_ForAutEntTesis_TraGraSisBib_202420.pdf.txtExtracted texttext/plain2104https://repositorio.uniandes.edu.co/bitstreams/1c3005db-4e41-4612-8fa2-2c4bc4ddc08e/download6ee7de03fc8f8aaaffe0f0756922ae95MD55Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdf.txtEcological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdf.txtExtracted texttext/plain62493https://repositorio.uniandes.edu.co/bitstreams/f01779f3-8d32-4e3c-aa86-502ebbdf2272/download6026d9c09d69da01e9c586b8d709157dMD57THUMBNAIL201914860_ForAutEntTesis_TraGraSisBib_202420.pdf.jpg201914860_ForAutEntTesis_TraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg10923https://repositorio.uniandes.edu.co/bitstreams/fafd07b0-352c-4651-b74c-dc4acf2791a2/downloadb13679ccd85f18498ce465e6a47e1eb8MD56Ecological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdf.jpgEcological dynamics of Aedes mosquitoes: unraveling the impact of larval competition and temperature on dengue transmission.pdf.jpgGenerated Thumbnailimage/jpeg8967https://repositorio.uniandes.edu.co/bitstreams/07f07ca2-4c5d-489c-a6f2-d26da91cad6b/download3576a6213fe2ad84bc2bd04a7ef70171MD581992/75324oai:repositorio.uniandes.edu.co:1992/753242025-01-12 03:02:07.088http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K